
Fast and Efficient Hardware Implementation of
HQC

Sanjay Deshpande1, Chuanqi Xu1, Mamuri Nawan2, Kashif Nawaz2 and
Jakub Szefer1

1CASLAB, Department of Electrical Engineering, Yale University, New Haven, USA,
sanjay.deshpande@yale.edu,chuanqi.xu@yale.edu,jakub.szefer@yale.edu

2Cryptography Research Centre, Technology Innovation Institute, Abu Dhabi, UAE
mamuri@tii.ae,kashif.nawaz@tii.ae

Abstract. This work presents a hardware design for constant-time implementation of
the HQC (Hamming Quasi-Cyclic) code-based key encapsulation mechanism. HQC
has been selected for the fourth-round of NIST’s Post-Quantum Cryptography stan-
dardization process and this work presents first, hand-optimized design of HQC key
generation, encapsulation, and decapsulation written in Verilog targeting implemen-
tation on FPGAs. The three modules further share a common SHAKE256 hash
module to reduce area overhead. All the hardware modules are parametrizable at
compile time so that designs for the different security levels can be easily generated.
The architecture of the hardware modules includes novel, dual clock domain design,
allowing the common SHAKE module to run at slower clock speed compared to the
rest of the design, while other faster modules run at their optimal clock rate. The
design currently outperforms the other hardware designs for HQC, and many of the
fourth-round Post-Quantum Cryptography standardization process, with one of the
best time-area products as well. For the combined HighSpeed design targeting lowest
security level, we show that the HQC design can perform key generation in 0.1 ms,
encapsulation in 0.14 ms, and decapsulation in 0.23 ms when synthesized for an Xilinx
Artix 7 FPGA. As this work shows, code-based algorithms can be competitive with
other schemes when optimized hardware is developed. The presented design will
further be made available under open-source license.
Keywords: HQC · Hamming Quasi-Cyclic · PQC · Post-Quantum Cryptography
· Key Encapsulation Mechanism · Code-Based Cryptography · FPGA · Hardware
Implementation

1 Introduction
Since 2016 NIST has been conducting a standardization process with the goal to standardize
cryptographic primitives that are secure against attacks aided by quantum computers.
There are today five main families of post-quantum cryptographic algorithms: hash-based,
code-based, lattice-based, multivariate, and isogeny-based cryptography. Very recently
NIST has selected one algorithm for standardization in the key encapsulation mechanism
(KEM) category, CRYSTALS-Kyber, and four fourth-round candidates that will continue
in the process. One of the four fourth-round candidates is HQC. It is a code-based KEM
based on structured codes.

As the standardization process is coming to an end after the fourth round, the perfor-
mance as well as hardware implementations of the algorithms are becoming very important
factor in selection of the algorithms to be standardized. The motivation for our work is
to understand how well hand-optimized HQC hardware implementation can be designed

mailto:sanjay.deshpande@yale.edu, chuanqi.xu@yale.edu, jakub.szefer@yale.edu
mailto:mamuri@tii.ae, kashif.nawaz@tii.ae

2 Fast and Efficient Hardware Implementation of HQC

and realized on FPGAs. To date, most of the post-quantum cryptographic hardware
has focused on lattice-based candidates, with code-based algorithms receiving much less
attention. All existing hardware implementations for HQC are based on high-level synthesis
(HLS) [AAB+20]. While HLS can be used for rapid prototyping, in our experience it
cannot yet outperform Verilog or other hand optimized designs. Indeed, as we show in
this work, our design outperforms the existing HQC HLS design.

In addition, our hardware design competes very well with the hardware designs for other
candidates currently in the fourth round of NIST’s process: BIKE, Classic McEliece, and
SIKE. The presented design has best time-area product as well as time for key generation
and decapsulation compared to the hardware for these designs. We also achieve similar
time-area product for encapsulation when compared to BIKE. Due to limited breakdown of
data for SIKE’s hardware [MLRB20] comparison to SIKE for all aspects is more difficult,
but we believe our design is better since for similar area cost, their combined encapsulation
and decapsulation times are two orders of magnitude larger. Detailed comparison to related
work is given in Section 4.

As this work aims to show, code-based designs can be competitive with other schemes
when optimized hardware is developed. Further our design is constant-time, eliminating
timing-based attacks. We believe our work shows that HQC can be a strong contender in
the fourth round of NIST’s process.

1.1 Open-Source Design
All our hardware designs reported in this paper are fully reproducible and their source
code will be released as open-source after the acceptance of this paper to a journal or a
conference with proceedings.

1.2 Paper Outline
The remainder of the paper is structured as follows. Section 2 gives background on the
HQC algorithm. Section 3 presents the hardware designs of the HQC modules, as well
as, it provides the evaluation results. Section 4 summarizes related work and presents
comparison of the HQC design to other existing designs. Section 5 concludes the paper.

2 Preliminaries
In this section, we briefly introduce HQC. We first introduce notations used in this paper.
Then concatenated Reed–Muller and Reed–Solomon codes that are used to encode and
decode messages in HQC are presented. In the end, HQC public key encryption (PKE)
and key encapsulation mechanism (KEM) are described. We refer to the specification of
HQC [AAB+20] for more detailed information.

2.1 Notation
In this paper, we denote F2 the binary finite field, and R = F2[X]/(Xn − 1) the quotient
ring on which vectors and operations of HQC are defined. For any field or ring, Fl

2 or Rl

denotes the field or ring of l dimensional vectors over F2 or R. An element x ∈ R can
be represented as either a vector x := (x0, x1, . . . , xn−1) or a polynomial x :=

∑n−1
i=0 xiX

i.
The Hamming weight of x is defined as

∑n−1
i=0 xi, i.e., the number of non-zero coefficients

in x. x ← R denotes x is chosen uniformly random from R, while x w←− R denotes x
is randomly chosen from R and the Hamming weight of x is w. Optionally, a random
seed can be specified for the sampling process, and the sampling process with random
seed θ is denoted as x w,θ←−− R. For x, y ∈ R, the addition a = x + y ∈ R and is

Sanjay Deshpande, Chuanqi Xu, Mamuri Nawan, Kashif Nawaz and Jakub Szefer 3

defined as ai = xi + yi mod 2 or ai = xi xor yi for i = 0, . . . , n − 1. The multiplication
a = x · y ∈ R and is defined as ak =

∑
i+j≡k mod n xi · yj mod 2 for k = 0, . . . , n − 1.

Encode(·) and Decode(·) are the encode and decode function of concatenated Reed–Muller
and Reed–Solomon codes, which will be introduced in Section 2.2.1. G(·),H(·),K(·) are
hash functions with domain separation bytes 3, 4, 5 respectively. Parameters n, w, wr

depend on the security level, which can be found on Table 1.

2.2 HQC PKE and KEM Schemes
To introduce HQC KEM, we first introduce how to encode and decode concatenated
Reed–Muller and Reed–Solomon codes, which are important parts in HQC PKE to encode
and decode messages. Then we introduce HQC PKE. Finally, HQC KEM that achieves
IND-CCA2 by performing the Fujisaki–Okamoto [HHK17] transformation is described.

2.2.1 Concatenated Reed–Muller and Reed–Solomon Codes

Concatenated Reed–Muller and Reed–Solomon Codes are used in the encode and decode
function of HQC to encode and decode messages. Specifically, the encode of concatenated
Reed–Muller and Reed–Solomon Codes is to first encode with Reed–Solomon code, and
then the output is encoded with Reed–Muller code. The decode process is executed in the
reverse order, i.e., first decode with Reed–Muller code, and then the output is decoded
with Reed–Solomon code. The parameter sets for the concatenated code can be found
in Table 1. Notice that shortened Reed–Solomon code and duplicated Reed–Muller code
instead of the conventional codes are used in HQC.
Encode of shortened Reed–Solomon code. In the polynomial representation, the
message can be denoted as u(x) = u0 + · · ·uk−1xk−1 ∈ F28 [x]/(x8 + x4 + x3 + x2 + 1). The
codeword is given by c(x) = b(x) + xn−ku(x), where b(x) = xn−ku(x) mod g(x), and g(x)
is the generator polynomial1, which is shown below for different security levels:

ghqc-128(x) = 89 + 69x + 153x
2 + 116x

3 + 176x
4 + 117x

5 + 111x
6 + 75x

7 + 73x
8 + 233x

9 + 242x
10 + 233x

11+

65x
12 + 210x

13 + 21x
14 + 139x

15 + 103x
16 + 173x

17 + 67x
18 + 118x

19 + 105x
20 + 210x

21 + 174x
22 + 110x

23+

74x
24 + 69x

25 + 228x
26 + 82x

27 + 255x
28 + 181x

29 + x
30

ghqc-192(x) = 45 + 216x + 239x
2 + 24x

3 + 253x
4 + 104x

5 + 27x
6 + 40x

7 + 107x
8 + 50x

9 + 163x
10 + 210x

11

+ 227x
12 + 134x

13 + 224x
14 + 158x

15 + 119x
16 + 13x

17 + 158x
18 + x

19 + 238x
20 + 164x

21 + 82x
22 + 43x

23

+ 15x
24 + 232x

25 + 246x
26 + 142x

27 + 50x
28 + 189x

29 + 29x
30 + 232x

31 + x
32

ghqc-256(x) = 49 + 167x + 49x
2 + 39x

3 + 200x
4 + 121x

5 + 124x
6 + 91x

7 + 240x
8 + 63x

9 + 148x
10 + 71x

11+

150x
12 + 123x

13 + 87x
14 + 101x

15 + 32x
16 + 215x

17 + 159x
18 + 71x

19 + 201x
20 + 115x

21 + 97x
22 + 210x

23

+ 186x
24 + 183x

25 + 141x
26 + 217x

27 + 123x
28 + 12x

29 + 31x
30 + 243x

31 + 180x
32 + 219x

33 + 152x
34+

239x
35 + 99x

36 + 141x
37 + 4x

38 + 246x
39 + 191x

40 + 144x
41 + 8x

42 + 232x
43 + 47x

44 + 27x
45 + 141x

46+

178x
47 + 130x

48 + 64x
49 + 124x

50 + 47x
51 + 39x

52 + 188x
53 + 216x

54 + 48x
55 + 199x

56 + 187x
57 + x

58

The generator polynomial can also be computed by g(x) =
∏n−k−1

i=0 (x− αi), where α
is the primitive element of the field.
Decode of shortened Reed–Solomon code. We denote the codeword to be v(x) =
v0 + v1x + · · ·+ vn−1xn−1, the error polynomial to be e(x) = e0 + e1x + · · ·+ en−1xn−1,
and the received word to be r(x) = r0 + r1x + · · · + rn−1xn−1. With these definitions,
r(x) = v(x) + e(x). The primitive element α of the field satisfies v(αi) = 0 for i = 1, . . . , 2d
(notice 2d = n − k), since g(αi) = 0 and v(x) mod g(x) = 0. If there is no error

1Zeroth Coefficient of ghqc-128(x) is updated based on the software reference implementation given at
https://pqc-hqc.org/implementation.html

https://pqc-hqc.org/implementation.html

4 Fast and Efficient Hardware Implementation of HQC

in the received word, r(αi) = v(αi) = 0, so e(αi) = 0. Otherwise, we can denote
r(αi) = e(αi) = ej1(αi)j1 + · · ·+ ejt

(αi)jt where e(x) has t errors at locations j1, . . . , jt.
Let us define:

Si = r(αi) = e(αi) = ej1(αj1)i + · · ·+ ejt(αjt)i, i = 1, . . . , 2d

σ(x) = (1 + αj1x)(1 + αj2x) · · · (1 + αjtx) = 1 + σ1x + σ2x2 + · · ·+ σtx
t

Z(x) = 1 + (S1 + σ1)x + (S2 + σ1S1 + σ2)x2 + · · ·+ (St + σ1St−1 + σ2St−2 + · · ·+ σt)xt

Then the error value at location jl can be computed by:

ejl
= Z((αjl)−1)∏t

i=1,i̸=l [1 + αji · (αjl)−1]

The decode steps are:

1. Compute Si = r(αi), i = 1, . . . , 2d.

2. Because σ((αji)−1) = 0, i = 1, . . . , t, the coefficients σi, i = 1, . . . , t can be calculated
from the linear equation set: 0 =

∑t
i=1 eji

(αji)l+tσ((αji)−1) = Sl+t + σ1Sl+t−1 +
σ2Sl+v−2 + · · ·+ σtSl, l = 0, . . . , t− 1.

3. The roots of σ(x) can be calculated, which are (αji)−1, i = 1, . . . , t.

4. Z((αjl)−1), l = 1, . . . t can be computed, and so do ejl
, l = 1, . . . , t.

5. The codeword can be computed by v(x) = r(x)− e(x).

Encode of duplicated Reed–Muller code. Encode of duplicated Reed–Muller code is
to directly perform a matrix vector multiplication. The generator matrix is shown below
(note that numbers are big endian and in hexadecimal):

G =

aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa
cccccccc cccccccc cccccccc cccccccc
f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0
ff00ff00 ff00ff00 ff00ff00 ff00ff00
ffff0000 ffff0000 ffff0000 ffff0000
00000000 ffffffff 00000000 ffffffff
00000000 00000000 ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff

If the message is m = (m0, . . . , m7) ∈ F28 , then c = mG, and the codeword is given by
duplicating c 3 or 5 times, depending on the security level.
Decode of duplicated Reed–Muller code. The decoding of duplicated Reed–Muller
codes is done in three steps:

1. The first step is applying the function F on the received codeword. Let v be
a duplicated Reed–Muller codeword with multiplicity 3, it can be seen as v =
(a1b1c1, ..., an1bn1cn1) where each ai, bi, ci has 128 bits size (ai = (ai1 , ..., ai128),
bi = (bi1 , ..., bi128) and ci = (ci1 , ..., ci128)). The transformation F is applied to each
element in v as ((−1)ai1 + (−1)bi1 + (−1)ci1 , ..., (−1)ai128 + (−1)bi128 + (−1)ci128).
For multiplicity 5, it follows the same process.

2. The second step is applying Hadamard transform on the output of the previous step.

3. The third step is finding the location of the highest value on the output of Hadamard
transform. When the peak is positive, we add all-one-vector. If there are two identical
peaks, we take the peak with smallest value in the lowest 7 bits.

Sanjay Deshpande, Chuanqi Xu, Mamuri Nawan, Kashif Nawaz and Jakub Szefer 5

2.2.2 HQC PKE

Key generation. First a vector h is sampled uniformly random, which is viewed as the
vector to generate a circulant matrix and further a systematic quasi-cyclic code of index 2.
More specifically, let h = (h0, . . . , hn−1). Then

rot(h) =

h0 hn−1 · · · h1
h1 h0 · · · h2
...

...
hn−1 hn−2 · · · h0

is a circulant matrix, and H = [I|rot(h)] is the parity-check matrix of a systematic quasi-
cyclic code of index 2. The secret key is composed of two vectors x, y that are sampled
with a specified weight w. [x|y] can be viewed as a random codeword with a random error.
Its syndrome is s = [x|y]HT = x + y× rot(h)T = x + h · y, where y× rot(h)T is defined
as the general vector-matrix multiplication. The public key is composed of h and the
syndrome s.
Encryption. Similar to key generation, three vectors r1, r2, e are sampled with a specified
weight wr. Then the syndrome u of [r1, r2] is computed. The message is encoded by
concatenated Reed–Muller and Reed–Solomon code introduced previously, as well as added
by s · r2 + e to get v. The final ciphertext comprises of u and v, i.e., c = [u|v].
Decryption. v− u · y is decoded by concatenated Reed–Muller and Reed–Solomon code.
The message can be correctly decoded whenever the Hamming weight of the given element
is less than the minimum distance of the code. The probability that the message cannot
be decoded from v− u · y is shown to be very small [AAB+20].

Algorithm 1 HQC.PKE.KeyGen() and HQC.KEM.KeyGen()
1: h ← R
2: (x, y) w←− R2

3: s := x + h · y
4: return (pk := (h, s), sk := (x, y))

Algorithm 2 HQC.PKE.Encrypt(pk = (h, s), m, θ)

1: (r1, r2, e) ωr,θ
←−−− R3

2: u := r1 + h · r2
3: t := Encode(m)
4: v := t + s · r2 + e
5: return c := (u, v)

Algorithm 3 HQC.PKE.Decrypt(sk = (x, y), c = (u, v))

1: m′ := Decode(v− u · y)
2: return m′

2.2.3 HQC KEM

Key generation. Key generation in KEM is the same as key generation in PKE.
Encapsulation. The message m is sampled to generate the shared secret. The random
seed θ = G(m), which will be used in the encryption to control the randomness. m is then
encrypted to generate c. Finally, the shared secret K = K(m, c), and the ciphertext is
[c|H(m)].
Decapsulation. c is used to retrieve the message m′. The decryption process may not be
correct and thus returns a wrong message. Therefore, the same process as encapsulation

6 Fast and Efficient Hardware Implementation of HQC

Table 1: Parameter sets for HQC. n is the length of the vector (polynomial). n1 is the length of
the Reed–Solomon code. n2 is the length of the Reed–Muller code. w is the weight of vectors x, y.
wr is the weight of vectors r1, r2, e. [n, k, d] of Reed–Solomon and Reed–Muller codes are shown
in the last two columns, and they are the length, the dimension, and the minimum distance of
the code. In HQC, shortened Reed–Solomon code and duplicated Reed–Muller code are used.
The multiplicity for duplicated Reed–Muller code is 3, 5, 5 for hqc-128, hqc-192, hqc-256.

Instance n w wr security pfail Reed–Solomon Reed–Muller

hqc128 17,669 66 75 128 < 2−128 [46, 16, 15] [384, 8, 192]
hqc192 35,851 100 114 192 < 2−192 [56, 24, 16] [640, 8, 320]
hqc256 57,637 131 149 256 < 2−256 [90, 32, 29] [640, 8, 320]

needs to be done and the ciphertext needs to be checked with the received ciphertext.
Finally, whether there are mistakes is returned.

Algorithm 4 HQC.KEM.Encapsulate(pk = (h, s))

1: m ← Fk
2

2: θ := G(m)
3: c := (u, v) = HQC.PKE.Encrypt(pk, m, θ)
4: K := K(m, c)
5: d := H(m)
6: return (K, (c, d))

Algorithm 5 HQC.KEM.Decapsulate(sk = (x, y), c, d)

1: m′ := HQC.PKE.Decrypt(sk, c)
2: θ′ := G(m′)
3: c′ := (u′, v′) = HQC.PKE.Encrypt(pk, m′, θ′)
4: d′ := H(m′)
5: K′ := K(m′, c)
6: if c ̸= c′ or d ̸= d′ then
7: return (K′, 0)
8: else
9: return (K′, 1)

10: end if

3 Hardware Design of HQC
HQC Key Encapsulation Mechanism (HQC-KEM) consists of three main primitives: Key
Generation, Encapsulation, and Decapsulation. The algorithms for each primitive were
shown in Algorithm 1, Algorithm 4, and Algorithm 5, respectively. These primitives are
built upon the HQC Public Key Encryption (HQC-PKE) primitives shown in Algorithm 1,
Algorithm 2, and Algorithm 3. Which in turn are built upon other, more basic building
blocks. In this work, we implement optimized and parameterizable hardware designs for
all the primitives and the building blocks from scratch. In the following subsections we
briefly discuss all the building blocks and provide comparisons with any existing designs.
The main building blocks involved for each of the primitives are as follows:

• Key Generation: Fixed weight vector generator, PRNG based random vector genera-
tor, polynomial multiplication, modular addition, and SHAKE256

• Encapsulation: Encrypt, SHAKE256

• Decapsulation: Decrypt, Encrypt, SHAKE256

Sanjay Deshpande, Chuanqi Xu, Mamuri Nawan, Kashif Nawaz and Jakub Szefer 7

Table 2: SHAKE256 module area and timing information, data based on synthesis results for
Artix 7 board with xc7a200t-3 FPGA chip. Formula for time-area product, T × A, is (LUT *
Time)/103.

Resources

Parallel Slices Logic Memory F Cycles Time T x A
(LUT) (DSP) (FF) (BR) (MHz) (cyc.) (us)

1 1,437 0 498 0 163 5,010 30.74 44
2 1,558 0 466 0 167 2,306 13.81 21
4 1,625 0 370 0 157 1,086 6.92 11
8 1,958 0 280 0 158 542 3.43 6
16 2,819 0 236 0 164 270 1.65 4

3.1 Modules Common Across the Design
In this section we give a high-level overview of hardware designs of the building blocks
that are used across the HQC-KEM and HQC-PKE.

3.1.1 SHAKE256

HQC uses SHAKE256 for multiple purposes e.g., as a PRNG for fixed weight vector
generation and random vector generation in Key Generation, as a PRNG for fixed weight
vector generation in Encryption, and for hashing in encapsulation and decapsulation. We
use the SHAKE256 module described in [CCD+22] (which was originally designed based
on Keccak design from [WTJ+20]) to perform SHAKE256 operations. We further tailor
the SHAKE256 hardware module as per the requirement for our hardware design:

• The existing SHAKE256 module [CCD+22] operates with command based interface
where the number of input bytes to be processed and number of output bytes required
are specified before starting the hash operation and there is no command to request
for additional bytes. We modify the exiting design and add an additional command
which provides the capability of requesting additional bytes. The purpose of adding
this command is to support the fixed weight vector generation process described in
Section 3.1.4.

• Since our modification of SHAKE256 holds the current state and does not automatically
return to its new input loading state, we modify the operation of the existing forced
exit signal to return the SHAKE256 module to default state. To support the dual clock
domain design described in Section 3.7, we also add a forced exit acknowledgement
port.

In addition to the aforementioned changes we further explored options for optimizing
the maximum clock frequency by pipelining the critical path. We note that there are several
such critical paths throughout the design and pipelining each path added severe overhead
in terms of clock cycles with minimal improvement in the maximum clock frequency.
Consequently the results presented in Table 2 are optimal time and area results for the
given hardware architecture. We use a similar performance parameter parallel_slices
as described in the original keccak design in [WTJ+20]. The SHAKE256 module has a fixed
32-bit data ports and data input and output is based on typical ready-valid protocol. The
results targeting Xilinx Artix 7 xc7a200t FPGA are shown in Table 2. The clock cycle
numbers provided in the Table 2 are for processing one block of input and generating one
block of output (where each block size is 1088-bits). There are five different options to
chose for the parallel_slices which provide different time-area trade-offs. We choose
parallel_slices = 16 as it provides the best time-area product. An interface diagram
of the SHAKE256 module is shown in Figure 1a. For brevity, we represent all the ports
interfacing with the SHAKE256 module with ⇔ in all further block diagrams in this paper.

8 Fast and Efficient Hardware Implementation of HQC

SHAKE256

din
32

dout

32

dout_valid

din_valid

force_done force_done_ack

dout_ready din_ready

(a) Interface for SHAKE256 module.

Barrel_
Rotation

RESULT
_RAM

Control
Logic

d
o
u
t

s
p
a
r
s
e
_
p
o
l
y
_
i
n
d
e
x

arb_poly
start done

BW
d
o
u
t
_
a
d
d
r

BW

log(n/BW)

m

(b) Hardware design of poly_mult module.

Figure 1: Block diagram for interface of the SHAKE256 module and poly_mult module.

3.1.2 Polynomial Multiplication

HQC uses polynomial multiplication operation in all the primitives of HQC-KEM. The
polynomial multiplication operation is multiplication of two polynomials with n compo-
nents in F2. After profiling all the polynomial multiplication operations from the HQC
specification document and the reference design [AAB+20], we note that in all the poly-
nomial multiplication operations, one of the inputs is a sparse fixed weight vector (with
weight w or wr in Table 1) of width n-bits. Consequently we design a sparse polynomial
multiplication technique with an interleaved reduction Xn − 1 (values of n can be found
in Table 1).

The motivation behind our polynomial multiplication unit is as follows: we represent
the non-sparse arbitrary polynomial as arb_poly and the sparse fixed-weight polynomial
by sparse_poly. For sparse_poly, rather than storing the full polynomial we only store
the indices for non-zero values. Then, the multiplication is performed by left shifting
arb_poly with each index of sparse_poly and then performing reduction of the resultant
vector in an interleaved fashion. Since the value of n is large in all parameter sets of HQC,
we take a sequential approach for performing the left shift. We implement a sequential
left shift module similar to one in [Gig04]. The shift module described [Gig04] uses a
register based approach and is not scalable when the length of the input is as large as the
n value for the HQC parameters (due to a larger resource utilization and complex routing).
This issue is circumvented in our design by implementing a block RAM based sequential
variable shift module with a dual port BRAM and small barrel rotation unit. The barrel
rotation unit and the block RAM widths are used as performance parameter (BW - Block
Width) for the shift module and in turn for the whole polynomial multiplication unit.
A similar implementation of sequential variable shift module was previously described
in [DdPM+21], however we could not readily use their implementation because the shift
module is tightly embedded with the other modules for a different application and we
re-implemented our version.

The hardware design of our polynomial multiplication module (poly_mult) is shown
in Figure 1b. The arb_poly input to the poly_mult module is loaded sequentially and
the width is of each chunk of arb_poly is equal to BW (making total number of chunks
in polynomial equal to RAMDEPTH = ceil(n/BW)). We store the least significant part of
the polynomial at lowest address of the block RAM and most significant part at the
highest address. Since the polynomial length in HQC parameters is equal to n and is
not divisble by BW (n is a prime) we append the most significant part of the polynomial
with zeros. For sparse_poly, one index is loaded at a time. While performing the shift
operation we also perform the reduction (Xn − 1) in an interleaved fashion. Since the

Sanjay Deshpande, Chuanqi Xu, Mamuri Nawan, Kashif Nawaz and Jakub Szefer 9

Table 3: Comparison of our area and timing information poly_mult module with the other
sparse polynomial multiplication units targeting Artix 7 board with xc7a200t FPGA chip.

Resources

BW Logic Memory F Cycles Time T x A
(bits) (LUT) (DSP) (FF) (BR) (MHz) (cyc.) (us)

Our poly_mult module, Polynomial Length∗ = 12,323, W ∗
SP ARSE = 71

32 396 0 181 1 270 27,621 0.10 41
64 599 0 205 2 277 13,918 0.05 30
128 1,438 0 456 4 238 7,102 0.03 43

General Sparse Multiplier, Polynomial Length∗ = 12,323, W ∗
SP ARSE = 71 [RBCGG21]

32 319 0 127 2 234 27,691 0.12 38
64 549 0 190 4 222 13,988 0.06 35
128 1,136 0 381 8 185 7,172 0.04 44

Sparse Multiplier, Polynomial Length∗ = 10,163, W ∗
SP ARSE = 71 [HWCW19]

32 100† — — 2 240 158,614 0.66 —
64 157† — — 3 220 90,880 0.41 —
128 292† — — 5 210 51,688 0.24 —
†= Slices (no info on LUTs), + Length of the non-sparse arbitrary polynomial, ∗ = Weight of the sparse polynomial input

result of multiplying two n-bit polynomials could be a 2n-bit polynomial and reduction of
2n-bit polynomial to (Xn − 1) in F2 is equivalent to slicing of the 2n-bit polynomial into
two parts of n-bit polynomials and then performing a bitwise XOR. As result, when the
shift operation is performed on each chunk we also compute the address value (ADDR_2N)
(signifying the degree of the resultant polynomial). If we notice that this degree of the
resultant polynomial is greater that n we perform XOR of this chunk to the lower chunk by
decoding the address based on the value of ADDR_2N. We perform similar operation over
all the indices of the sparse_poly to achieve the final multiplied resultant value.

The clock cycles taken by our poly_mult module for one polynomial multiplication
can be computed using the following formula where WSP ARSE is weight of the sparse
polynomial, n is length of the polynomial, BW is the block width, 3 cycles represents the
number of pipeline stages and 2 cycles are for the start and done synchronization with
interfacing modules. The clock cycles taken for shift and interleaved reduction for one
index is (3 + ceil(n/BW)). Our poly_mult module is constant time and we achieve that
by fixing the WSP ARSE to a specific value (w and wr) based on the parameter set.

latencypoly_mult = WSP ARSE × (3 + ceil(n/BW)) + 2

Table 3 shows the results for our poly_mult module compared with the related work.
We note that our sparse polynomial multiplication module performs better in terms of
time while utilizing half the Block RAM resources when compared to the existing designs.
Table 4 shows results for our poly_mult module for the parameter sizes used for HQC
hardware design.

3.1.3 Polynomial Addition/Subtraction

HQC uses polynomial addition/subtraction in all of its primitives. Since all addition and
subtraction operations happen in F2, the addition and subtraction could be realized as the
same operation. We design two variants of constant-time adders namely xor_based_adder
and location_based_adder that could be attached with our polynomial multiplication
module described in Section 3.1.2. We design our adder modules as an extension for
polynomial multiplication because the addition/subtraction always appears with the
polynomial multiplication as shown in Algorithm 1, Algorithm 2, and Algorithm 3. The
adders operate on contents of block RAM since the polynomials are stored inside the block
RAM. Both of the adder module designs do not use any additional block RAM resources,

10 Fast and Efficient Hardware Implementation of HQC

Table 4: Time and are information of our poly_mult module for different HQC paramater sizes
with different performance parameter (BW) sizes, data based on synthesis results for Artix 7 board
with xc7a200t-3 FPGA chip.

Resources

Input Length+ W ∗
sparse Logic Memory F Cycles Time T x A

(bits) (LUT) (DSP) (FF) (BR) (MHz) (cyc.) (us)
Our poly_mult module (BW = 32)

17,669 (hqc128) 66 412 0 189 1 287 36,698 0.13 53
35,851 (hqc192) 100 387 0 193 2 257 112,402 0.44 169
57,637 (hqc256) 131 397 0 199 2 267 236,457 0.89 352

Our poly_mult module (BW = 64)
17,669 (hqc128) 66 620 0 245 2 270 18,482 0.07 42
35,851 (hqc192) 100 649 0 249 2 286 56,402 0.20 128
57,637 (hqc256) 131 644 0 223 2 283 118,426 0.42 269

Our poly_mult module (BW = 128)
17,669 (hqc128) 66 1,439 0 496 4 238 9,374 0.04 57
35,851 (hqc192) 100 1,445 0 500 4 240 28,402 0.12 171
57,637 (hqc256) 131 1,448 0 474 4 245 59,476 0.24 352
+ Length of the non-sparse polynomial, ∗ = Weight of the sparse polynomial input

Table 5: Polynomial addition modules (xor_based_adder and loc_based_adder with datapath
width 128-bits) area and timing information, data based on synthesis results for Artix 7 board
with xc7a200t-3 FPGA chip.

Resources

Input Length Logic Memory F Cycles Time T x A
(bits) (LUT) (DSP) (FF) (BR) (MHz) (cyc.) (us)

xor_based_adder (BW = 128)
17,669 143 0 159 0 330 142 0.43 0.06
35,851 142 0 161 0 318 284 0.89 0.12
57,637 142 0 161 0 311 455 1.46 0.20

loc_based_adder
17,669 160 0 174 0 316 69 0.22 0.03
35,851 161 0 174 0 300 103 0.34 0.05
57,637 161 0 175 0 300 134 0.45 0.07

they load the polynomial multiplication output, perform the addition, and write the value
back to the same block RAM inside the polynomial.

The xor_based_adder design performs addition in a regular F2 fashion by performing
bit-wise exclusive-OR operation. The module performs addition sequentially by generating
one block RAM address per clock cycle to load inputs from two block RAMs and then
performs addition and writes them back to one of the specified block RAMs at the same
block RAM address.

The location_based_adder is an optimized adder designed to perform addition when
one of the input is a sparse vector. This module is mainly designed to perform operations
x+h ·y from Algorithm 1 and r1 +h ·r2 and s ·r2 +e from Algorithm 2. In these operations
the values of x, r1, and e are sparse, fixed-weight vectors so the addition is optimized by
only flipping the bits of the other input in the position of one. The location_based_adder
module takes location of ones from the sparse vector as input and computes the address to
load out the part of non-sparse polynomial from the block RAM and flips the bit on the
appropriate location and writes it back to the same location. The process is repeated until
all locations with ones are covered. Since there are a fixed, and known number of ones in
the fixed-weight vector, there is a fixed number of operations and timing does not reveal
any sensitive information. Results of our polynomial addition location_based_adder
module for one performance parameter (width = 128) are shown in Table 5.

Sanjay Deshpande, Chuanqi Xu, Mamuri Nawan, Kashif Nawaz and Jakub Szefer 11

ctx
_RAM

Control Logic Seed
Handling

seed_
RAM

p
r
e

p
r
o
c
e
s
s loca

tion
_RAM

T
h
r
e
s
h
o
l
d

C
h
e
c
k
 a
n
d

R
e
d
u
c
t
i
o
n

OneGen

Control Logic to handle
SHAKE communication

Control Logic to
handle Threshold

check and Reduction

outputseed_in

Vector
BRAM

(init.
with
all 0)

=

c
o
l
l
i
s
i
o
n

A
d
d
r
e
s
s

D
e
c
o
d
e
r

Position
Decoder

l
o
c
a
t
i
o
n

Put 1

Control Logic

vector_output
(optional)

shake_output

SHAKE256

Control Logic to
handle Context

Figure 2: Hardware design of fixed_weight_vector module.

3.1.4 Fixed-Weight Vector Generator

The fixed-weight vector generator function generates a uniform random n-bit fixed-weight
vector of a specified input weight (w). The module assumes that there is a random
number generator that can be used to generate uniformly random bits. The algorithm for
fixed-weight generation as specified in [AAB+20] first generates 24×w random bits. These
random bits are then arranged into w 24-bit integers. These 24-bit integers undergo a
threshold check and are rejected if the integer value is beyond the threshold (949× 17, 669,
467 × 35, 851, 291 × 57, 637 for hqc-128, hqc-192 and hqc-256 respectively). After the
threshold check, these integers are reduced modulo n. After the threshold check and
reduction process if the weight is not equal to w then more random bits are drawn from
RNG and the process is repeated until w integers are achieved. After the threshold check
and reduction then a check for duplicates is performed over all the reduced integers. In
case any duplicate is found, that integer is discarded and more random bits are requested
drawn from the RNG which again undergo threshold check, reduction and duplicate check.
This process is repeated until a uniform fixed weight vector is generated.

In our hardware design, we use a PRNG to generate the uniformly random bits required
for the fixed weight vector generation from an input seed of length 320-bits. Our hardware
design includes this PRNG in the form of SHAKE256. Our design assumes that the
seed will be initialized by some other hardware module implementing a true random
number generator.

The hardware design of fixed_weight_vector generation module is shown in Figure 2.
We use SHAKE256 module described in Section 3.1.1 to expand 320-bit seed to a 24×w-bit
string. Since the SHAKE256 module has 32-bit interface the seed is loaded in 32-bit chunks
and the seed is stored in seed_RAM as shown in the Figure 2. The 32-bit chunk from
SHAKE256 is broken into 24-bit integer by preprocess unit and stored in the ctx_RAM
then threshold check and reduction are performed. For the reduction, we use Barrett
reduction. The Barrett reduction is optimized to reduce for specific value (n) since that
value is constant. After the reduction, the integer values are stored in the locations_RAM.
Once the locations_RAM is filled the OneGen module is triggered. The OneGen module
helps in detecting if there are any duplicates in the locations_RAM. Our OneGen module is
inspired from duplicate checking logic described in [CCD+22]. While the OneGen module
checks for duplicates, the SHAKE256 module generates the next 24× w-bit string to tackle
any potential duplicates and stores them in the ctx_RAM. This way we are able to mask
any clock cycles taken for seed expansion.

The main pitfall where the fixed-weight vector generation process may show non
constant-time behavior is the rejection sampling process (i.e., the threshold check and

12 Fast and Efficient Hardware Implementation of HQC

Table 6: fixed_weight_vector module area and timing information, data based on synthesis
results for Artix 7 board with xc7a200t-3 FPGA chip and probability of failing constant-time
behavior of our fixed_weight_vector generation module best and worst case values for the
parameter, ACCEPTABLE_REJECTIONS.

Resources

Design Weight Logic Memory F Cycles Time T x A Failure+

(LUT) (FF) (BR) (MHz) (cyc.) (us) Prob.

non constant-time design (ACCEPTABLE_REJECTIONS = 0)
hqc128 75 240 111 2.0 226 709 3.14 0.75 1.1× 2−11

hqc192 114 229 112 2.0 220 1,840 8.36 1.92 1.1× 2−9

hqc256 149 234 117 2.0 228 2,106 9.24 2.16 1.1× 2−12

constant-time design (ACCEPTABLE_REJECTIONS = wr)
hqc128 75 316 124 2.0 223 3,649 16.36 5.17 2.8× 2−199

hqc192 114 295 125 2.0 236 4,200 17.80 5.25 1.1× 2−280

hqc256 149 314 192 2.5 242 5,935 24.52 7.70 4.9× 2−355

+ = Probability of our design failing to behave constant-time.

duplicate detection as discussed earlier). A timing attack on existing software reference
implementation of HQC [AAB+20] was performed in [GHJ+22]. The authors use the
information of rejection sampling routine (that is part of fixed-weight generation) being
invoked during the deterministic re-encryption process in decapsulation and show that this
leaks secret-dependent timing information. The timing of the rejection sampling routine
depends upon the given seed. This seed is derived for the encrypt function in encapsulation
and decapsulation procedures using the message. The decapsulation operation is dependent
on the decoded message and this dependency allows to construct a plaintext distinguisher
(described in detail in [GHJ+22]) which is then used to mount the timing attack.

Our fixed-weight generation module can be parametrized to create design with arbitrarily
small probability of timing attack being possible, we note that probabilty of absolute
zero cannot be practically reached. In our hardware module, we make the constant time
behavior parameterizable (parameter name is ACCEPTABLE_REJECTIONS). We can specify
how many indices could be rejected and still the design will behave constant time (at
the cost of extra area for more storage and extra cycles). The extra area is because we
generate additional (based on parameter value) uniformly random bits in advance and
store them in the ctx_RAM (shown in Figure 2). The extra clock cycles are needed because
even after we found the required number of indices under the threshold value, we still go
over all the ctx_RAM locations and, for the duplicate detection logic inside OneGen module
(shown in Figure 2), the control logic is programmed to take the same cycles in both cases
of duplicate being detected or not. The parameter can be set based on user’s target failure
probability. If the actual failures are within the failure probability set by the selected
parameter value, then the timing side channel given in [GHJ+22] is not possible.

The right most column in Table 6 shows probability of non constant-time design
(ACCEPTABLE_REJECTIONS = 0) versus constant-time design (ACCEPTABLE_REJECTIONS =
wr) failing to behave in constant-time manner. The choice of the demonstrated parameter
is made based on the values of wr given in Table 1. We choose wr as the parameter value
for demonstration because when the rejection sampling procedure rejects the first index
the seedexpander function in software reference implementation [AAB+20] generates wr

new set of indices and first index from the new set is used to replace the old rejected
index and for the second rejection next index from the new set is chosen to replace the
old rejected index, etc. This process is repeated until specified weight for the vector is
achieved. To compute the failure probability (given in Table 6) for each parameter set, we
take in to account both threshold check failure and duplicate detection probabilities for
the respective parameter sets.

Table 6 shows the results of the fixed weight hardware module targeting Artix 7
xc7a200t FPGA. The area excludes SHAKE256 module as the SHAKE256 is shared among

Sanjay Deshpande, Chuanqi Xu, Mamuri Nawan, Kashif Nawaz and Jakub Szefer 13

Table 7: encode module area and timing information, data based on synthesis results for Artix 7
board with xc7a200t-3 FPGA chip.

Resources

Design Logic Memory F Cycles Time T x A
(LUT) (DSP) (FF) (BR) (MHz) (cyc.) (us)

hqc128 858 0 922 2 270.34 97 0.36 307.86
hqc192 1,011 0 1,088 2 298.32 131 0.44 443.96
hqc256 1,503 0 1,689 2 293.51 189 0.64 967.83

all primitives. The reported frequency in Table 6 is the fixed_weight core frequency. We
discuss later our dual clock domain design (in Section 3.7) that allows the modules to run
at their core frequency while SHAKE256 runs on a slower clock.

3.2 Encode and Decode Modules
The encode and decode modules are building blocks of the encrypt and decrypt modules,
respectively. We describe the encode and decode modules here, before describing the bigger
encrypt and decrypt modules in Section 3.3.

3.2.1 Encode Module

As specified in Section 2.2.1, HQC Encode uses concatenation of two codes namely
Reed–Muller and Reed–Solomon codes. The hardware design of our encode module is
shown in Figure 3. The Encode function takes K-bit input and first encodes it with the
Reed–Solomon code. The Reed–Solomon encoding process involves systematic encoding
using a linear feedback shift register (LFSR) with a feedback connection based on the
generator polynomial (shown in Section 2.2.1). The Reed–Solomon code generates a
n1-bit output (as given in [AAB+20] the value for n1 is 368, 448, and 720 for hqc128,
hqc192, and hqc256 respectively). For the Galois field multiplication unit (for the field
F2[x]/(x8 + x4 + x3 + x2 + 1)) we design an LFSR-based optimized multiplication unit
similar to the one described in [SR17]. The number of Galois field multiplication units we
run in parallel is equal to the degree of the generator polynomial. The outputs from Galois
field multipliers are fed in to a LFSR after each cycle. At the end of encoding process the
module generates a n1-bit output.

The n1-bit output from Reed–Solomon code is then encoded by Reed–Muller code. The
Reed–Muller encoding is achieved by performing vector-matrix multiplication where each
byte from input is the vector and the matrix is generator matrix (G) given in Section 2.2.1.
In our design we store the generator matrix rows (each row is of length 128-bits) in ROM
and we select the matrix rows based on each input byte. We store the output after
multiplying input byte into a block RAM in chunks of 128-bits. Based on the security
parameter set the code word output from Reed–Muller code has a multiplicity value (i.e.,
number of times a code word or in our case number of times each block RAM location
is repeated). As per the specification [AAB+20], hqc128 has multiplicity value of 3 and
hqc192 and hqc256 have multiplicity value of 5. To optimize the storage, we only store
one copy of code word, and while accessing the code word we compute the block RAM
address in a way that the multiplicity is achieved. The time and area results for our
encode module targeting Artix 7 board with xc7a200t-3 FPGA are shown in Table 7.

3.2.2 Decode Module

As introduced in Section 2.2.1, the ciphertext is first decoded with duplicated Reed-Muller
code and then with shortened Reed-Solomon code. To decode duplicated Reed-Muller
code, the transformation module expands and adds multiple code words into expanded

14 Fast and Efficient Hardware Implementation of HQC

Control Logic

start

g
x

m_in

done

SHIFT_REG

0

REG
8

GF_MUL
1+𝑥2+𝑥3 +𝑥4

+𝑥8

GF_MUL
1+𝑥2+𝑥3 +𝑥4

+𝑥8

GF_MUL
1+𝑥2+𝑥3 +𝑥4

+𝑥8

…

CODEWORD_LFSR

MSB LSB

8 8 8

8
8 8

K

Control Logicstart

done cdw_out

SHIFT_REG

8

…

CW_
RAM

G
m
_
R
0

N1

0 0

G
M
_
R
1

0

G
M
_
R
7

XOR

cdw_out_addr

128 128

128

128

128

Reed Solomon Encode Reed Muller Code

Figure 3: Hardware design of encode module (formed by concatenating two encode functionalities,
Reed-Solomon on the the left side and Reed-Muller on the right side).

Control Logic

start

expand_
and_
sum_

Hadamard_
transform

find_
peaks

128

0

1

0

1

din

8

comp_
syndrome

comp_
error_

locator_
poly

comp_
Z_

poly

comp_
root

comp_
error_
values

fix_
messages

K

m_out

Control Logic
Reed Solomon DecodeReed Muller Decode

done

Figure 4: Hardware design of decode module (formed by concatenating two decode functionalities,
Reed-Muller on the the left side and Reed-Solomon on the right side).

code word, and then the Hadamard transformation is applied to the expanded code
word. Finally, Find_Peak module finds the location of the highest absolute value of
the Hadamard_Transformation output. Figure 5 describes detailed hardware design of
Reed-Muller Decoder. expand_and_sum module collects data inputs into m x 128-bit shift
register, then add and shift the last 2-bit lsb of each shift register to produce a pair of data
outputs. The data pair is then processed in hadamard_transformation module which
consist of 7 layers of similar blocks of radix-2 butterfly structure. With the outputs from
hadamard_transformation coming in pairs, finding peak can be done in parallel inside
the Find_Peak module and compare the peaks of each to be the final peak. The whole
processes then repeated n1 times to produce n1 data output to Reed-Solomon Decoder.

To decode Reed-Solomon code, we need to sequentially compute syndromes Si, coef-
ficients σi of error location polynomial σ(x), roots of error location polynomial (αi)−1,
pre-defined helper polynomial Z((αi)−1), errors ei, and finally correct the output of decode
of Reed-Muller code based on the errors.

3.3 Encrypt and Decrypt Modules

The encrypt and decrypt modules are building blocks of the encapsulation and decapsulation
modules, respectively. We describe the encrypt and decrypt modules here, before describing
the bigger encapsulation and decapsulation modules later.

Sanjay Deshpande, Chuanqi Xu, Mamuri Nawan, Kashif Nawaz and Jakub Szefer 15

HAD
Layer0

0

1

HAD
Layer1

0

1

HAD
Layer6

0

1

… FIX
DOUT

0

1

dout0

dout1

0

1

0

1

0

1

din0

din1

+

-

n

n

n+1

n+1

FIFO
F0

FIFO
F1

FIFO
S0

FIFO
S1

Control Logic

din0

din1

n+1
dout1

n+1
dout0

HADAMARD LAYER i

(a) hadamard_transformation module.

10/11

Control Logic

din0

abs

FindPeaksCore

Find
Peaks
Core0

Find
Peaks
Core1

Compare

din1

dout
8

abs
a>b

a
din

10/11

10/11

10/11

10/11

8

value

pos

valid

b

(b) find_peak module.

Control Logicstart valid_o

12
8

din_i SHIFT_REG0

SHIFT_REG1

d1 d0

d1 d0

d1 d0

+

+…
…

…

SHIFT_REGm-1

dout0_o
2/
3

2/
3 dout1_o

…

m : MULTIPLICITY

(c) expand_and_sum module.

Figure 5: Hardware design of Reed-Muller Decoder.

3.3.1 Encrypt Module

The encrypt module (shown in Algorithm 2) takes public key (h, s), message m, and
seed (θ) and generates a ciphertext (u,v) as the output. The hardware design for
the encrypt module is shown in Figure 6a. We use the constant-time version of our
fixed_weight_vector module with ACCEPTABLE_REJECTIONS = wr described in Sec-
tion 3.1.4 to generate r1, r2, and e fixed-weight vectors of weight wr by expanding
theta_in and in parallel we run encode module (described in Section 3.2.1). After the
generation of r2 we start the polynomial multiplication of h.r2 in parallel to the e genera-
tion. For polynomial multiplication we use the poly_mult module with BW = 128 described
in Section 3.1.2. The addition of r1 in u computation and e in v computation is performed
by our location_based_adder and addition with t is performed by xor_based_adder
(described in Section 3.1.3).

From Algorithm 2, we observe that both h.r2 and s.r2 multiplications can be per-
formed in parallel, consequently we design a parallel_encrypt module targeting higher
performance where we use two polynomial multiplications in parallel (shown in Figure 6c).
We provide a choice of using either encrypt or parallel_encrypt module as a parameter.
Table 9 shows results for both the encrypt hardware implementations targeting Xilinx

16 Fast and Efficient Hardware Implementation of HQC

Table 8: decode module area and timing information, data based on synthesis results for Artix 7
board with xc7a200t-3 FPGA chip.

Resources

Design Logic Memory F Cycles Time T x A
(LUT) (DSP) (FF) (BR) (MHz) (cyc.) (ms)

hqc128 2,817 0 3,779 2.5 205 4,611 0.02 63
hqc192 3,257 0 4,727 2.5 212 5,485 0.03 84
hqc256 3,679 0 5,574 2.5 206 9,199 0.04 164

fixed_
weight_
vector

Control Logic

theta_in

poly_
mult

encode

location_
based_
adder

m_in

u_
RAM

v_addr

v_out

u_out

s_inh_in

r1_
RAM

r2_
RAM

xor_
based_
adder

S
H
A
K
E
2
5
6

hs_addr_out

start done u_addr

(a) encrypt module.

Control
Logic

poly_mult

decode

dout

u
_
a
d
d
r
_
o
u
t v

_
a
d
d
r
_
o
u
t

u_in y_in

xor_based
_adder

v_in

v-u.y

y
_
a
d
d
r
_
o
u
t

s
t
a
r
t

done

(b) decrypt module.

fixed_
weight_
vector

Control Logic

poly_
mult

Encode

location_
based_
adder

m_in

u
_
a
d
d
r

u
_
o
u
t

h_in s_in

r1_
RAM

r2_
RAM

(Dual Port)

location_
based_
adder

poly_
mult

xor_based
_adder

v
_
a
d
d
r

v
_
o
u
t

theta_in

S
H
A
K
E
2
5
6

start done

(c) parallel_encrypt module.

Figure 6: Hardware design of encrypt, parallel_encrypt, and decrypt modules.

Artix 7 xc7a200t FPGA. We note that the major contributor to the overall time in encrypt
operation is due to polynomial multiplication and using two poly_mult modules in parallel
reduces the overall time by 40-60% across different parameter sets. The area results do not
include the SHAKE256 module as the SHAKE256 is shared among all primitives. Figure 4
shows the hardware block design on our module and Table 8 shows the time and area
results for our module.

Sanjay Deshpande, Chuanqi Xu, Mamuri Nawan, Kashif Nawaz and Jakub Szefer 17

Table 9: encrypt module area and timing information, data based on synthesis results for Artix
7 board with xc7a200t-3 FPGA chip.

Resources†

Design Logic Memory F Cycles Time T x A
(LUT) (DSP) (FF) (BR) (MHz) (cyc.) (us)

encrypt module – uses one poly_mult module with with BW = 128
hqc128 2,108 0 1,611 10 233 26,418 0.11 239
hqc192 3,936 0 1,882 13 196 72,870 0.37 1,463
hqc256 2,855 0 2,363 10.5 232 146,363 0.63 1,801

parallel_encrypt module – two poly_mult modules with BW = 128 running in parallel
hqc128 5,055 0 2,041 12.5 213 15,403 0.07 365
hqc192 5,511 0 2,292 15 193 39,838 0.21 1,137
hqc256 5,652 0 2,779 13 210 77,736 0.37 2,092
† = Given resources does not include the area for SHAKE256 module.

Table 10: decrypt module area and timing information, data based on synthesis results for
Artix 7 board with xc7a200t-3 FPGA chip.

Resources†

Design Logic Memory F Cycles Time T x A
(LUT) (DSP) (FF) (BR) (MHz) (cyc.) (us)

hqc128 6,352 0 5,730 10.5 194 14,198 0.07 464
hqc192 7,038 0 6,787 10.5 187 34,313 0.18 1,291
hqc256 8,544 0 8,740 13 186 69,356 0.37 3,185
† = Given resources does not include the area for SHAKE256 module.

3.3.2 Decrypt Module

The decrypt module (shown in Algorithm 3) takes secret key (x, y), ciphertext (u,v),
and generates the message (m’). Figure 6b shows our hardware design for decrypt
module. The module accepts part of the secret key (y) as locations with ones (since it is a
sparse fixed weight vector). We use our poly_mult module with BW = 128 described in
Section 3.1.2 to compute u.y and use xor_based_adder module (described in Section 3.1.3)
to compute v−u.y. We then use the decode module (described in Section 3.2.2) to decode
v− u.y and retrieve the message. Table 10 shows our hardware implementation results
for decrypt module targeting Xilinx Artix 7 xc7a200t FPGA.

3.4 Key Generation
We now begin to describe the top-level modules, starting with the key generation, following
in later sections with encapsulation and decapsulation. The discussion here focuses on
single clock domain design. The novel dual clock domain design which allows the top-level
modules run at different frequencies from the SHAKE256 module that they depend on is
described in Section 3.7.

The key generation (shown in Algorithm 1) takes secret key seed and public key
seed as an input and generates secret key (x, y) and public key (h, s) respectively as
output. Figure 7 shows the hardware design of our keygen module. Our keygen module
assumes that the public key seed and the secret key seed are generated by some other
hardware module implementing a true random number generator. We use the constant-
time version fixed_weight_vector module with ACCEPTABLE_REJECTIONS = w described
in Section 3.1.4 to generate (x, y) from the secret key seed. x and y are fixed weight
vectors of weight w and length n-bits. To optimize the storage, rather than storing full
n-bit sparse vector we only output locations of ones. There is also an optional provision
to output the full vector as described in Section 3.1.4. The vector_set_random uses
the SHAKE256 module to expand the public key seed and generates h. We then use
poly_mult module with BW = 128 (described in Section 3.1.2) to compute (h.y and finally

18 Fast and Efficient Hardware Implementation of HQC

poly_mult
X_
RAM

vector_
set_

random

Control Logic

out

sk_seed_in

start done

fixed_
weight_
vector

location_
based_adder

pk_seed_in

out_type

s
h
a
k
e
_
o
u
t
p
u
t

SHAKE256

Figure 7: Hardware design of the keygen module.

Table 11: keygen module area and timing information, data based on synthesis results
for Artix 7 board with xc7a200t-3 FPGA chip. Data for single clock design, using slow
clock due to hash module critical path.

Resources†

Design Logic Memory F Cycles Time T x A
(LUT) (DSP) (FF) (BR) (MHz) (cyc.) (ms)

hqc128 2,561 0 1,116 5.5 164 15,752 0.09 245
hqc192 1,630 0 866 9.5 164 39,580 0.24 393
hqc256 1,725 0 891 9.5 164 76,111 0.46 800

hqc128-perf HLS∗[AAB+20] 12,000 0 9,000 3 150 40,000 0.27 3,240
hqc128-comp. HLS∗[AAB+20] 4,700 0 2,700 3 129 630,000 4.80 22,560

hqc128-optimized. HLS∗[DNN+22] 11,484 0 8,798 6 150 40,427 0.27 3,095
hqc128-pure HLS∗[DNN+22] 24,746 0 21,746 7 153 40,427 0.27 6,539
† = Given resources does not include the area for SHAKE256 module, ∗ = Target FGPA is Artix-7 xc7a100t-1

use location_based_adder module (described in Section 3.1.3) to compute s. We note
that in the Figure 7 only a block RAM for x storage (X_RAM) is visible because the y, h, s
are stored in the block RAMs which are inside fixed_weight_vector, poly_mult, and
location_based_adder modules respectively.

Table 11 shows the results for the keygen module. We note that the maximum clock
frequency of keygen module alone (without SHAKE256) module is in range 250-259 MHz
based on the parameter set selected, but since the critical path lies inside the SHAKE256
module we report SHAKE256’s frequency in the Table 11. The area results do not
include the SHAKE256 module because it is shared among all other primitives. Our dual
clock domain design can be applied to the key generation to run the key generation and
SHAKE256 at two different frequencies (discussed in Section 3.7).

3.5 Encapsulation Module
The encapsulate operation (shown in Algorithm 4) takes public key (h, s) and message m as
an input and generates shared secret (K) and ciphertext (c = (u,v)) and d. The hardware
design of the encap module is shown in Figure 8a. Our encap module assumes that m is
generated by some other hardware module implementing a true random number generator
and provided as an input to our module. Since the SHAKE256 module is extensively

Sanjay Deshpande, Chuanqi Xu, Mamuri Nawan, Kashif Nawaz and Jakub Szefer 19

S
H
A
K
E
2
5
6

m
_
i
n C

o
n
t
r
o
l

L
o
g
i
c

uv_out

HASH_
RAM

encrypt
(or)

parallel
_encrypt

H
A
S
H

P
r
o
c
e
s
s
o
r

D_
RAM

Seed
RAM

K_out

d
_
o
u
t

shake_output

s
t
a
r
t

d
o
n
e

(a) encap module.

Encap S
H
A
K
E
2
5
6

u
_
i
n

control
logic

u_
RAM K_out

v_
RAM

u_compare

v
_
i
n

D_
RAMd

_
i
n

v_compare

d_compare

h_in s_in

Decrypt

mprime

y start done

m
p
r
i
m
e
_
f
a
i
l

(b) decap module.

Figure 8: Hardware design of encap and decap modules.

Table 12: encap module area and timing information, data based on synthesis results for Artix
7 board with xc7a200t-3 FPGA chip. Design with single clock, using the slow clock due to hash
module critical path.

Resources†

Design Logic Memory F Cycles Time T x A
(LUT) (DSP) (FF) (BR) (MHz) (cyc.) (ms)

our encap module with encrypt
hqc128 2,628 0 1,965 13 164 34,521 0.21 553
hqc192 4,318 0 2,328 18 164 89,065 0.54 2,345
hqc256 3,295 0 2,850 15.5 164 172,126 1.05 3,458

our encap module with parallel_encrypt
hqc128 5,545 0 2,393 15.5 164 23,506 0.14 794
hqc192 6,678 0 2,737 20 164 56,033 0.34 2,281
hqc256 6,632 0 3,265 18 164 103,499 0.63 4,185

hqc128 perf HLS∗[AAB+20] 16,000 0 13,000 5.0 151 89,000 0.59 9,440
hqc128 comp. HLS∗[AAB+20] 6,400 0 4,100 5.0 127 1,500,000 12.00 76,800

hqc128 optimized HLS∗[DNN+22] 16,487 0 13,390 10.0 152 89,110 0.59 9,665
hqc128 pure HLS∗[DNN+22] 29,496 0 26,333 11.0 148 89,131 0.59 17,764
† = Given resources does not include the area for SHAKE256 module, ∗ = Target FGPA is Artix-7 xc7a100t-1

used in encapsulate operation we design a HASH_processor module which handles all
the communication with the SHAKE256 module. HASH_processor modules reduces the
multiplexing logic of inputs to the SHAKE256 module significantly.

The Hash_processor modules helps in expanding m to generate θ. We then use our
encrypt module (described in Section 3.3.1) to encrypt m using θ and the public key as
inputs and generates ciphertext. After the generation of r1, r2, and e inside the encrypt
module (described in Section 3.3.1) we then run HASH_processor module in parallel to
encrypt module to generate d. After the encryption of m we then use the HASH_processor
to compute K(m, c) to generate the shared secret K. Our design is constant-time since all
the underlying modules are constant-time and the control logic from the encap module
does not depend on any secret input.

Table 12 shows the results for the encap module with our encrypt and parallel_encrypt.
The maximum clock frequency of encap module alone (without SHAKE256 module) is in
range 196-232 MHz for the design with encrypt and 192-213 MHz for the design with
parallel_encrypt based on the parameter set selected but since the critical path lies
inside the SHAKE256 module we report that frequency in the Table 12. The area results do
not include the SHAKE256 module because it is shared among all other primitives.

20 Fast and Efficient Hardware Implementation of HQC

Table 13: decap module area and timing information, data based on synthesis results for Artix
7 board with xc7a200t-3 FPGA chip. Design with single clock, using slow clock due to hash
module critical path.

Resources†

Design Logic Memory F Cycles Time T x A
(LUT) (DSP) (FF) (BR) (MHz) (cyc.) (ms)

our decap module with encrypt
hqc128 8,381 0 6,445 20 164 49,295 0.30 2,519
hqc192 10,364 0 7,827 25 164 124,524 0.76 7,869
hqc256 9,590 0 9,233 22.5 164 243,310 1.48 14,228

our decap module with parallel_encrypt
hqc128 12,755 0 6,879 22.5 164 38,280 0.23 2,977
hqc192 12,454 0 8,236 27 164 91,492 0.56 6,948
hqc256 12,996 0 9,642 25 164 174,683 1.07 13,843

hqc128 perf HLS∗[AAB+20] 19,000 0 15,000 9.0 152 190,000 1.20 22,800
hqc128 comp. HLS∗[AAB+20] 7,700 0 5,600 10.5 130 2,100,000 16.00 123,200

hqc128 optimized HLS∗[DNN+22] 18,739 0 15,243 18.0 152 193,082 1.27 23,804
hqc128 pure HLS∗[DNN+22] 24,898 0 21,680 18.0 150 193,004 1.27 32,036
† = Given resources does not include the area for SHAKE256 module, ∗ = Target FGPA is Artix-7 xc7a100t-1

CORE SHAKE256

Control
Logic

CORE
TO
SHAKE
FIFO

SHAKE
TO
CORE
FIFO

Control
Logic

Control
Logic

Control
Logic

D
u
a
l
-
F
l
o
p

S
y
n
c
h
r
o
n
i
z
e
r

din

dout

force_done

force_done_ack

din_shake

dout_shake

CoreClock SHAKE256Clock

C
o
r
e

I
n
p
u
t
s

C
o
r
e

O
u
t
p
u
t
s

Figure 9: Hardware design of core_wrapper supporting dual clock.

3.6 Decapsulation Module

The decapsulate operation (shown in Algorithm 5) takes secret key (x, y), public key
(h, s), ciphertext (c = (u, v)), d as an input and generates shared secret (K). Figure 8b
shows hardware design the decap module. We use our decrypt module (described in
Section 3.3.2) to decrypt the input ciphertext using secret key (y) and generate the m′.
We then use encap module to perform re-encryption of m′ and generate u′, v′ and d′. We
then pause the encap module to verify the u′, v′ and d′ against u, v and d. After the
verification we set a signal (optional port mprime_fail) if the verification fails. Irrespective
of verification result we still continue with the generation of the shared secret K to maintain
the constant-time behavior.

Table 13 shows the results for the decap module using encrypt and parallel_encrypt
(for performing the rencryption). We note that the maximum clock frequency of decap
module alone (without SHAKE256) module is in range 178 - 194 MHz across different
parameter sets but since the critical path lies inside the SHAKE256 module so we report
that frequency in the Table 13. The area results do not include the SHAKE256 module
because it is shared among all the primitives.

Sanjay Deshpande, Chuanqi Xu, Mamuri Nawan, Kashif Nawaz and Jakub Szefer 21

Table 14: Designs with dual clocks, using slow clock for hash module, and fast clock for remainder
of the design. keygen, encap, and decap modules area and timing information, data based on
synthesis results for Artix 7 board with xc7a200t-3 FPGA chip.

Resources†

Design Logic Memory FC FS Cyc.C Cyc.S Time T x A
(LUT) (DSP) (FF) (BR) (MHz) (MHz) (cyc.) (cyc.) (ms)

keygen
hqc128 2,611 0 905 10.5 250 164 11,821 7,958 0.10 250
hqc192 2,568 0 917 11.5 259 164 32,405 14,445 0.21 547
hqc256 2,579 0 939 12 250 164 65,082 22,153 0.40 1,020

encap with encrypt module
hqc128 2,498 0 1,975 13 222 164 25,484 17,935 0.22 560
hqc192 4,199 0 2,338 18 196 164 72,263 33,452 0.57 2,404
hqc256 3,152 0 2,860 15.5 232 164 146,444 51,209 0.94 2,972

encap with parallel_encrypt module
hqc128 5,532 0 2,403 15.5 213 164 14,470 17,935 0.18 981
hqc192 6,526 0 2,747 20 192 164 39,231 33,452 0.41 2,662
hqc256 6,090 0 3,276 18 206 164 77,818 51,209 0.69 4,207

decap with encrypt module
hqc128 8,142 0 6,455 20 194 164 40,254 17,935 0.32 2,581
hqc192 10,373 0 7,837 25 178 164 107,721 33,452 0.81 8,393
hqc256 9,598 0 9,243 22.5 186 164 217,628 51,209 1.48 14,218

decap with parallel_encrypt module
hqc128 12,623 0 6,892 22.5 194 164 29,240 17,935 0.26 3,284
hqc192 12,463 0 8,246 27 178 164 74,689 33,452 0.62 7,772
hqc256 13,004 0 9,652 25 186 164 149,002 51,209 1.11 14,469
FC = Core Frequency, FS = SHAKE256 Frequency, CycC = Core Cycles, CycS = SHAKE256 Cycles, † = Given resources does
not include the area for SHAKE256 module

3.7 Dual Clock Design

By profiling our keygen, encap, and decap modules we observe that the maximum number
of clock cycles in all the operations are taken by our poly_mult module (described in
Section 3.1.2) and we note that (as specified in Section 3.1.4) the maximum clock frequency
of keygen, encap, decap modules is limited by the SHAKE256 module since the critical
path lies inside the round function of SHAKE256. To optimize the time taken by the time
consuming modules such as poly_mult whose frequency is higher than that of SHAKE256
module, we implement a core_wrapper module (shown in Figure 9) that has a capability
to support two asynchronous clocks.

The core_wrapper block represented in Figure 9 can be any of the our modules that
needs to interface with the SHAKE256 module, i.e. key generation, encapsulation or decapsu-
lation module. In the core_wrapper design we use two FIFOs (generated using the Xilinx
IP generator) one in each direction (Core_to_SHAKE256_FIFO, SHAKE256_to_Core_FIFO).
We compute the depth of the FIFO considering the worst case scenario and CoreClock
to be of higher frequency than SHAKE256Clock. For Core_to_SHAKE_FIFO we note the
depth be 36 (with width of each location to be 32). Out of 36 locations first two block
are the SHAKE256 module commands describing input and output width and rest of
34× 32 = 1088-bits represents the block size of the SHAKE256. We select FIFO width to
be 32 since the SHAKE256 module has a 32-bit interface (as described in Section 3.1.1). For
SHAKE_to_CORE_FIFO we compute the depth of the FIFO to be 1. For the force_done
and force_done_ack signals we use a Dual_Flop_Synchronizer.

Table 14 shows the results for our dual clock hardware designs of keygen, encap,
decap modules. We note that there is some overhead in terms of additional clock cycles
when moving the data through FIFOs but the overhead is overcome through the higher
clock frequency of the core. The area results do not include the SHAKE256 module as the
SHAKE256 is shared among all primitives. Overall we note that the dual clock design
is helpful when either the difference in core cycles and SHAKE cycles is higher or the
difference between the SHAKE256 module and core module is higher or both (e.g., keygen

22 Fast and Efficient Hardware Implementation of HQC

Table 15: Comparison of the time and area for our HQC hardware design with the related work.

Resources

Design Logic Memory F Encap Decap KeyGen

(LUT) (DSP) (FF) (BR) (MHz) (Mcyc.) (ms) (Mcyc.) (ms) (Mcyc.) (ms)

Security Level 1 — Classical 128-bit Security
HQC – Our Work, HDL design, Artix 7 (xc7a200t)

Balanced− SC 16,389 0 9,762 38.5 164 0.03 0.21 0.05 0.30 0.02 0.10
Balanced−DC 16,070 0 9,571 43.5 194 0.04 0.24 0.06 0.32 0.02 0.11
HighSpeed− SC 23,680 0 10,624 43.5 164 0.02 0.14 0.04 0.23 0.02 0.10
HighSpeed−DC 23,585 0 10,436 48.5 194 0.03 0.18 0.05 0.26 0.02 0.11

HQC – [AAB+20], HLS design, Artix 7 (xc7a100t)
LightW eight 8,900 0 6,400 14.0 132 1.50 12.00 2.10 16.00 0.63 4.80
HighSpeed 20,000 0 16,000 12.5 148 0.09 0.60 0.19 1.20 0.04 0.30

HQC – [DNN+22], HLS design, Artix 7 (xc7a100t)
optimized 32,423 0 10,084 25 150 0.09 0.59 0.19 1.29 0.04 0.27
pure 32,398 0 10,068 26 148 0.09 0.60 0.19 1.30 0.04 0.27
SC = SingleClockDomain, DC = DualClockDomain, FF = flip-flop, F = Fmax, BR = BRAM,

module results from Table 14). If not, the extra clock cycles taken for synchronization
and the extra area over head would deteriorate the overall performance of the design (e.g.,
encap and decap modules’ results from Table 14).

4 Related Work
This section presents related work, focusing on full hardware designs of the four fourth-
round public-key encryption and key-establishment algorithms in NIST’s standardization
process: BIKE, Classic McEliece, HQC, and SIKE. We also include the CRYSTALS-
Kyber which is a public-key encryption and key-establishment algorithm selected for
standardization at the end of the prior third-round. Due to limited space, related work on
software implementations is omitted.

4.1 Comparison to Existing HQC Hardware Designs
For most other designs there is usually a light-weight and high-speed version. For our
design we also present multiple variants: Balanced and HighSpeed with single clock domain
(abbreviated SC) and Balanced and HighSpeed with dual clock domain (abbreviated
DC). The main difference between our Balanced and HighSpeed designs is, our balanced
designs uses the regular encrypt module (shown in Figure 6a) and our HighSpeed design
uses the parallel_encrypt module (shown in Figure 6c) for performing the encryption
and re-encryption operations in encapsulation and decapsulation operations. For our
SC designs, the resources are the sum of all the resources used by the key generation,
encapsulation, decapsulation and shared hash module. The SC designs’ frequency is
limited by the hash module frequency. For our DC designs, we also sum the resources.
The resource usage increases due to the asynchronous FIFOs used to bridge the two clock
domains and associated control logic. The cycles increase due to the extra cycles waiting
for FIFOs to be filled with data before being read. However, we note that if most of the
cycles are spent in the faster clock domain, the overall times are reduced.

As a comparison, hardware design for HQC has been previously reported in [AAB+20].
The design was generated using high-level synthesis (HLS) as opposed to hand-written
HDL code. The code can be generated to obtain performance numbers: 0.3ms for key
generation, 0.6ms for encapsulation, and 1.2ms for decapsulation, the times correspond
to the high-speed implementation of the lowest security level. Our design is faster for all
three operations. Authors also provide light-weight version for the lowest security level,
but did not provide hardware designs for other levels. Our implementation covers all

Sanjay Deshpande, Chuanqi Xu, Mamuri Nawan, Kashif Nawaz and Jakub Szefer 23

Table 16: Comparison of the time and area of hardware designs of other (NIST PQC competition)
round 4 KEM candidates.

Resources

Design Logic Memory F Encap Decap KeyGen

(LUT) (DSP) (FF) (BR) (MHz) (Mcyc.) (ms) (Mcyc.) (ms) (Mcyc.) (ms)

Security Level 1 — Classical 128-bit Security
BIKE – [RBMG22], HDL design, Artix 7 (xc7a35t)

LightW eight 12,868 7 5,354 17.0 121 0.20 1.2 1.62 13.3 2.67 21.9
HighSpeed 52,967 13 7,035 49.0 96 0.01 0.1 0.19 1.9 0.26 2.7

BIKE – [RBCGG21], HDL design, Artix 7 (xc7a200t)
LightW eight 12,319 7 3,896 9.0 121 0.05 0.4 0.84 6.89 0.46 3.8
T radeOff 19,607 9 5,008 17.0 100 0.03 0.3 0.42 4.2 0.18 1.9
HighSpeed 25,549 13 5,462 34.0 113 0.01 0.1 0.21 1.9 0.19 1.7

Classic McEliece – [CCD+22], HDL design, Artix 7 (xc7a200t)
LightW eight 23,890 5 45,658 138.5 112 0.13 1.1 0.17 1.5 8.88 79.2
HighSpeed 40,018 4 61,881 177.5 113 0.03 0.3 0.10 0.9 0.97 8.6

SIKE – [MLRB20], HDL design, Artix 7 (xc7a100t)
LightW eight 11,943 57 7,202 21 145 — 25.6 — 27.2 — 15.1
HighSpeed 22,673 162 11,661 37 109 — 15.3 — 16.3 — 9.1

Kyber – [JGCS21], HDL design, (xc7a35t-2)
CB 5,269 2 2,422 6 — 0.67 2.67 0.73 2.93 0.69 2.75
RB 7,151 2 2,422 5 — 0.03 0.10 0.03 0.12 0.04 0.15

Kyber – [DMG21], HDL design, (xc7a200t)
HighSpeed 9,457 4 8,543 4.5 220 0.003 0.01 0.004 0.02 0.002 0.01

Kyber – [XL21], HDL design, (xc7a12t-1)
Balanced 7,412 2 4,644 3 161 0.005 0.23 0.006 0.04 0.003 0.02
CB = CoProcessorBased, RB = RoundBased, FF = flip-flop, F = Fmax, BR = BRAM

three security levels. The authors provide code to generate VHDL implementation, for
an Artix-7, from the HLS-compatible sources.2 A different HLS based design has been
presented in [DNN+22], which achieves similar results to [AAB+20], and is also slower
than our design.

The area and timing of the different HQC hardware designs is listed in Table 15. The
table compares our HQC design to other existing HQC HLS designs from the literature. Our
data is from synthesis reports, while data for the other algorithms is from the cited papers.

4.2 Comparison to Hardware Designs for Other Round 4 Algorithms
We also provide Table 16 where we tabulate latest hardware implementations of all other
post-quantum cryptographic algorithm hardware implementations from the fourth round of
NIST’s standardization process, plus the to-be standardized Kyber algorithm. We focus on
comparison of the hardware designs for lowest level of security, Level 1, as all publications
give clear time and area numbers. Majority of related work provides hardware designs
for more than the lowest security level, but the timing and area numbers are not clearly
broken down in the respective publications, so we focus only on comparing among the
lowest security level designs.

Among the other existing designs, a hardware design for BIKE has been presented
in [RBMG22]. The work investigated different strategies to efficiently implement the BIKE
algorithm on FPGAs. The authors improved already existing polynomial multipliers,
proposed efficient designs to realize polynomial inversions, and implement the Black-Gray-
Flip (BGF) decoder. The authors provided VHDL designs for key generation, encapsulation,
and decapsulation. For the fastest design, the authors showed 2.7ms for the key generation,
0.1ms for the encapsulation, and 1.9ms for the decapsulation, the times correspond to the

2https://pqc-hqc.org/implementation.html

https://pqc-hqc.org/implementation.html

24 Fast and Efficient Hardware Implementation of HQC

high-speed implementation for the lowest security level. The authors also provide data for
light-weight implementation for the lowest security level. Their paper further discusses
Level 3 parameters for BIKE, but does not give final hardware data for the that security
level. The authors provide free, non-commercial license for the hardware code.3

Another BIKE hardware implementation in [RBCGG21] provides similar results but
at much smaller area for their high-speed version. Two key arithmetic components from
BIKE, polynomial multiplication and inversion were improved by implementing a sparse
polynomial multiplier and extended euclidean algorithm based inversion unit due to which
substantial amount of improvement was seen in all the primitives. The authors provided
verilog designs for key generation, encapsulation, and decapsulation and they are available
free under non-commercial license. 4

Apart from earlier mentioned BIKE hardware implementations, [GGM+22] presents
a practical approach of client (decapsulation and keygen) - server(Encapsulation) based
model for generating the shared secret using BIKE. The presented design outperforms
[RBMG22] in terms of time for all primitives but has significantly larger area footprint.
[MGCZ22] presents a comparison between pure software implementation, pure HLS design,
and HLS based HW/SW codesign for BIKE. However the performance of any of these
design do not outperform the performance results tabulated in Table 16.

Classic McEliece has been most recently implemented in [CCD+22]. This is the first
complete implementation of Classic McEliece KEM. The design provided Verilog code
for encapsulation and decapsulation modules as well as key generation module with seed
expansion. The authors presented three new algorithms that can be used for systemization
of the public key matrix during key generation. The authors showed that the complete
Classic McEliece design can perform key generation in 8.6ms, encapsulation in 0.3ms, and
decapsulation in 0.9ms, the times correspond to the high-speed implementation for the
lowest security level. The authors also provide hardware implementation for other security
levels, and light-weight and high-speed versions for all the levels. The authors provide
open-source code for the hardware.5 Apart from the earlier implementation, [ZZC+22]
presented a high-throughput and compact key generation module. The authors presented
improvements in Gaussian elimination, sorting unit and other hardware optimizations such
as algorithm level pipelining. Overall, 11% reduction in clock cycles, 31% reduction in
BRAM utilization was observed with 11% increase in the logic utilization.

Hardware implementation of SIKE has been provided in [MLRB20]. The authors
created VHDL implementation of SIKE as a hardware co-processor. Their design can
realize any of the SIKE security levels. For the high-speed design for the lowest security
level, authors report the time for encapsulation, decapsulation, and keygen as 15.3ms,
16.3ms, and 9.1ms respectively. The authors make the code available under Creative
Commons public domain license.6

Different hardware implementations of CRYSTALS-Kyber are available in [JGCS21,
DMG21, XL21]. The authors presented designs configurable for different performance,
area requirements, and parameter sets. The high-speed design provided in [DMG21]
outperforms all other algorithms in terms of time for key generation, encapsulation, and
decapsulation. For the lowest security level, the authors reported 0.02ms for key generation,
0.03ms for encapsulation, and 0.04ms for decapsulation. The authors did not provide
access to the code for their hardware design.

3https://github.com/Chair-for-Security-Engineering/BIKE
4https://github.com/Chair-for-Security-Engineering/RacingBIKE
5https://caslab.csl.yale.edu/code/pqc-classic-mceliece/
6https://github.com/pmassolino/hw-sike

https://github.com/Chair-for-Security-Engineering/BIKE
https://github.com/Chair-for-Security-Engineering/RacingBIKE
https://caslab.csl.yale.edu/code/pqc-classic-mceliece/
https://github.com/pmassolino/hw-sike

Sanjay Deshpande, Chuanqi Xu, Mamuri Nawan, Kashif Nawaz and Jakub Szefer 25

5 Conclusion
This work presented hardware design for constant-time implementation of the HQC code-
based key encapsulation mechanism. This work presented first, hand-optimized design
of HQC key generation, encapsulation, and decapsulation written in Verilog targeting
implementation on FPGAs. The three modules further share a common SHAKE256 hash
module to reduce area overhead. The architecture of the hardware modules included novel,
dual clock domain design, allowing the common SHAKE module to run at slower clock
speed compared to the rest of the design, while other faster modules run at their optimal
clock rate. The design currently outperforms the other hardware designs for HQC, and is
competitive with other fourth-round Post-Quantum Cryptography standardization process.
As this work showed, code-based designs can be competitive with other schemes when
optimized hardware is developed.

References
[AAB+20] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier

Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti,
Gilles Zémor, and Jurjen Bos. HQC. Technical report, National Institute of
Standards and Technology, 2020. available at https://pqc-hqc.org/doc/
hqc-specification_2021-06-06.pdf.

[CCD+22] Po-Jen Chen, Tung Chou, Sanjay Deshpande, Norman Lahr, Ruben Niederha-
gen, Jakub Szefer, and Wen Wang. Complete and improved FPGA implemen-
tation of Classic Mceliece. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2022(3):71–113, 2022.

[DdPM+21] Sanjay Deshpande, Santos Merino del Pozo, Victor Mateu, Marc Manzano,
Najwa Aaraj, and Jakub Szefer. Modular inverse for integers using fast
constant time gcd algorithm and its applications. In Proceedings of the
International Conference on Field Programmable Logic and Applications,
FPL, August 2021.

[DMG21] Viet Ba Dang, Kamyar Mohajerani, and Kris Gaj. High-speed hardware
architectures and fpga benchmarking of crystals-kyber, ntru, and saber.
Cryptology ePrint Archive, Paper 2021/1508, 2021. https://eprint.iacr.
org/2021/1508.

[DNN+22] Sanjay Deshpande, Mamuri Nawan, Kashif Nawaz, Jakub Szefer, and Chuanqi
Xu. Don’t Wait for SHAKE256: A Fast HQC Hardware Implementation.
2022.

[GGM+22] Andrea Galimberti, Davide Galli, Gabriele Montanaro, William Fornaciari,
and Davide Zoni. On the use of hardware accelerators in qc-mdpc code-based
cryptography. In Proceedings of the 19th ACM International Conference
on Computing Frontiers, CF ’22, page 193–194, New York, NY, USA, 2022.
Association for Computing Machinery.

[GHJ+22] Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander
Nilsson, and Robin Leander Schröder. Don’t reject this: Key-recovery timing
attacks due to rejection-sampling in hqc and bike. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2022, Issue 3:223–263, 2022.

[Gig04] Paul Gigliotti. Implementing barrel shifters using multipliers. Technical
Report XAPP195, Xilinx, 2004.

https://pqc-hqc.org/doc/hqc-specification_2021-06-06.pdf
https://pqc-hqc.org/doc/hqc-specification_2021-06-06.pdf
https://eprint.iacr.org/2021/1508
https://eprint.iacr.org/2021/1508

26 Fast and Efficient Hardware Implementation of HQC

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis
of the Fujisaki–Okamoto transformation. In Yael Kalai and Leonid Reyzin,
editors, Theory of Cryptography, pages 341–371, Cham, 2017. Springer Inter-
national Publishing.

[HWCW19] Jingwei Hu, Wen Wang, Ray C.C. Cheung, and Huaxiong Wang. Optimized
polynomial multiplier over commutative rings on fpgas: A case study on
bike. In 2019 International Conference on Field-Programmable Technology
(ICFPT), pages 231–234, 2019.

[JGCS21] Arpan Jati, Naina Gupta, Anupam Chattopadhyay, and Somitra Kumar
Sanadhya. A configurable CRYSTALS-Kyber hardware implementation with
side-channel protection. Cryptology ePrint Archive, 2021.

[MGCZ22] Gabriele Montanaro, Andrea Galimberti, Ernesto Colizzi, and Davide Zoni.
Hardware-software co-design of bike with hls-generated accelerators, 2022.

[MLRB20] Pedro Maat C. Massolino, Patrick Longa, Joost Renes, and Lejla Batina. A
compact and scalable hardware/software co-design of SIKE. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems, 2020(2):245–271,
Mar. 2020.

[RBCGG21] Jan Richter-Brockmann, Ming-Shing Chen, Santosh Ghosh, and Tim Güneysu.
Racing bike: Improved polynomial multiplication and inversion in hard-
ware. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2022(1):557–588, Nov. 2021.

[RBMG22] Jan Richter-Brockmann, Johannes Mono, and Tim Guneysu. Folding bike:
Scalable hardware implementation for reconfigurable devices. IEEE Transac-
tions on Computers, 71(5):1204–1215, 2022.

[SR17] Cecilia Sandoval-Ruiz. Vhdl optimized model of a multiplier in finite fields.
Ingenieria y Universidad, 21(2):195–212, Jun. 2017.

[WTJ+20] Wen Wang, Shanquan Tian, Bernhard Jungk, Nina Bindel, Patrick Longa, and
Jakub Szefer. Parameterized hardware accelerators for lattice-based cryptog-
raphy and their application to the hw/sw co-design of qTESLA. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, 2020(3):269–306,
Jun. 2020.

[XL21] Yufei Xing and Shuguo Li. A compact hardware implementation of cca-secure
key exchange mechanism crystals-kyber on fpga. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2021(2):328–356, Feb. 2021.

[ZZC+22] Yihong Zhu, Wenping Zhu, Chen Chen, Min Zhu, Zhengdong Li, Shaojun
Wei, and Leibo Liu. Compact gf(2) systemizer and optimized constant-time
hardware sorters for key generation in classic mceliece. Cryptology ePrint
Archive, Paper 2022/1277, 2022. https://eprint.iacr.org/2022/1277.

https://eprint.iacr.org/2022/1277

	Introduction
	Open-Source Design
	Paper Outline

	Preliminaries
	Notation
	HQC PKE and KEM Schemes

	Hardware Design of HQC
	Modules Common Across the Design
	Encode and Decode Modules
	Encrypt and Decrypt Modules
	Key Generation
	Encapsulation Module
	Decapsulation Module
	Dual Clock Design

	Related Work
	Comparison to Existing HQC Hardware Designs
	Comparison to Hardware Designs for Other Round 4 Algorithms

	Conclusion

