Design of Quantum Computer Antivirus

Abstract

The development of quantum computers has been advancing rapidly in recent years. In addition to researchers and companies building bigger and bigger machines, these computers are already being actively connected to the internet and offered as cloud-based quantum computer services. As quantum computers become more widely accessible, potentially malicious users could try to execute their code on the machines to leak information from other users, to interfere with or manipulate results of other users, or to reverse engineer the underlying quantum computer architecture and its intellectual property, for example. To analyze such new security threats to cloud-based quantum computers, this work first proposes and explores different types of quantum computer viruses. This work shows that quantum viruses can impact outcomes of Grover’s search algorithm or machine learning classification algorithms running on quantum computers, for example. The work then proposes a first of its kind quantum computer antivirus as a new means of protecting the expensive and fragile quantum computer hardware from quantum computer viruses. The antivirus can analyze quantum computer programs, also called circuits, and detect possibly malicious ones before they execute on quantum computer hardware. As a compile-time technique, it does not introduce any new overhead at run-time of the quantum computer.

Type
Publication
IEEE International Symposium on Hardware Oriented Security and Trust (HOST)
Chuanqi Xu
Chuanqi Xu
Ph.D. Student

I am a PhD candidate at Yale University. My current research focuses on quantum computing and computer security, where I design novel attacks and defenses targeting quantum computers and quantum cloud providers. Specifically, my work explores security and privacy across the entire technology stack of quantum computers:

  1. Investigating vulnerabilities in quantum processors and qubit technologies.
  2. Developing secure and private quantum computer systems and architecture.
  3. Ensuring the security of quantum algorithms, with a focus on quantum machine learning (QML).

Previously, I worked on RTL design (Verilog) for FPGAs, implementing Post-Quantum Cryptography (PQC) that is secure to both classical and quantum computer attacks.

I am actively seeking roles as a research scientist, software engineer, and quant researcher. I am broadly interested in developing systems and infrastructure, especially for ML/GenAI infrastructure and systems.