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Abstract—This work presented the first thorough exploration
of the attacks on the interface between gate-level and pulse-
level quantum circuits and pulse-level quantum circuits them-
selves. Typically, quantum circuits and programs that execute
on quantum computers, are defined using gate-level primitives.
However, to improve the expressivity of quantum circuits and
to allow better optimization, pulse-level circuits are now often
used. The attacks presented in this work leverage the incon-
sistency between the gate-level description of the custom gate,
and the actual, low-level pulse implementation of this gate. By
manipulating the custom gate specification, this work proposes
numerous attacks: qubit plunder, qubit block, qubit reorder,
timing mismatch, frequency mismatch, phase mismatch, and
waveform mismatch. This work demonstrates these attacks on
the real quantum computer and simulator, and shows that most
current software development kits are vulnerable to these new
types of attacks. In the end, this work proposes a defense
framework. The exploration of security and privacy issues of
the rising pulse-level quantum circuits provides insight into the
future development of secure quantum software development
kits and quantum computer systems.

1. Introduction

Quantum computing is advancing rapidly with more and
bigger quantum computers coming online every year: from
quantum computers with one or two qubits two decades
ago, to computers with 1121 qubits presently available; and
projections for quantum computers with 200 qubits capable
of running 100 million gates by the current decade’s end [1].
These existing quantum computers are categorized as Noisy
Intermediate-Scale Quantum (NISQ) quantum computers [2]
since they do not provide error correction [3] and have noisy
qubits and operations. Nevertheless, they show promise in
applications like optimization, natural sciences, artificial
intelligence, finance, etc [4], [5], [6], [7], [8], [9], [10].

Nowadays, quantum computers are easily accessible
through cloud-based services such as IBM Quantum [11],
Amazon Bracket [12], or Microsoft Azure [13]. As the uti-
lization of quantum computers is on the rise, the importance
of securing quantum circuits and programs that execute on
the quantum computers, also becomes increasingly evident.

Quantum circuits serve as the foundational building blocks
for quantum computation, orchestrating the manipulation
and processing of quantum bits. These circuits encode
quantum algorithms and enable the execution of complex
computations, offering the potential to outperform classical
computers in specific tasks. Typical quantum circuits are
usually built using quantum gates, which are abstract units
that define specific operations on qubits.

However, quantum circuits are not restricted to be de-
fined only using quantum gates. The landscape is evolving
beyond conventional gate-level circuits. Recent advance-
ments highlight the substantial advantages of deconstruct-
ing gate-level circuits into lower layers, specifically pulses
responsible for controlling qubits in quantum computers.
Defining circuits using low-level control pulses proves ad-
vantageous for tasks such as quantum circuit decomposi-
tion, compilation, and optimization [14], [15], [16], [17],
[18], [19], as well as enhancing the expressivity and effi-
ciency of quantum circuits [20], [21], [22], [23]. Despite
the many benefits of specifying quantum circuits using
lower-level control pulses, security and privacy have sel-
dom been touched on. One recent research work introduced
higher-energy state attacks, exploiting control pulses to ex-
cite qubits into higher-energy levels, and then abusing the
properties of higher-energy states to circumvent standard
operations in quantum computers [24].

To address research gaps in this field, this paper un-
dertakes the first comprehensive exploration of security and
privacy aspects concerning quantum circuits built partly or
wholly from low-level pulses rather than purely from gates.
In particular, we introduce a new class of attacks, which
leverage the inconsistency between the definition of the
custom quantum gate, and the low-level implementation of
the pulses that realize the gate operations. For the attacks,
we assume attackers can clandestinely implant or modify the
low-level pulse implementation such that it is not revealed
to the high-level gate definition. The proposed attacks are
particularly dangerous for two reasons: Firstly, most current
quantum software development kits are deficient in the in-
terface between gate-level and pulse-level, and pulse config-
urations specifying pulse-level gates are in the analog form.
These make our attacks less understandable and difficult to
verify. Secondly, due to the continuously changing phys-
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Figure 1: The proposed attacks. The quantum circuit is defined
by the quantum software development kit (SDK) and executed on
the quantum computer. The vulnerable quantum circuit includes
the custom gate, whose implementation is specified by the pulse.
The attacker can perform channel attacks and pulse attacks.

ical properties of quantum computers, pulse configuration
needs frequent updates according to hardware properties to
maintain proper functionality. This in turn means that it is
almost impossible to verify pulses by comparing them to
some prior, correct pulses, since even correct pulses will
have changed with time. The pulse data is updated possibly
as often as the quantum computers are calibrated, providing
space for adversaries to install attacks. Both factors make
the attacks challenging to detect and prevent.

Our attacks can primarily manifest themselves in two
places in the quantum circuit stack. The first location is the
interface between gate-level and pulse-level circuits, referred
to as channel attacks. These attacks, encompassing qubit
spoilage, qubit reorder, and qubit block, focus more on
software development kit aspects. We scrutinized two widely
used quantum SDKs: Qiskit and Amazon Braket Python
SDK, and identified the possibility of exploiting channel
attacks in both SDKs. The second location is in the pulse
configuration, which directly specifies the pulse details. We
categorize this as pulse attacks. These attacks include timing
mismatch, frequency mismatch, phase mismatch, and wave-
form mismatch, each exploiting specific features of pulses
to manipulate qubits. We demonstrate these attacks on the
real quantum computer and simulator, focusing on exten-
sively utilized quantum algorithms: quantum teleportation,
Grover’s search, and quantum neural networks.

To counteract these attacks, we present a defense frame-
work that checks each type of the discussed attacks, as well
as propose a standard for the reuse of pulse-level circuits.
Our defense strategy encompasses a multi-faceted approach,
leveraging both hardware and software components to for-
tify quantum circuits against the attacks.

2. Background

This section aims to offer background on how data is
manipulated in quantum computers and a typical workflow
for running quantum computing programs.

2.1. Qubits and Quantum States

In the realm of quantum computing, the fundamental
unit of information is the quantum bit, or qubit. Concep-
tually akin to the classical bit in conventional computing,
a qubit possesses two basis states, symbolized in bra-ket
notation as |0⟩ and |1⟩. However, unlike classical bits which
are constrained to values of either 0 or 1, a qubit can exist
in a superposition of these states: |ψ⟩ = α |0⟩+β |1⟩, where
α, β are complex and |α|2 + |β|2 = 1.

Qubits are often represented using vector representation.
For instance, the single-qubit basis states can be denoted
as two-dimensional column vectors: |0⟩ =

[
1, 0

]T
and

|1⟩ =
[
0, 1

]T
, where T is the transpose. Thus, the state

|ψ⟩ can be expressed as |ψ⟩ = α |0⟩ + β |1⟩ =
[
α, β

]T
.

Extending this notion to n qubits, the space of n-qubit
states encompasses 2n basis states, ranging from |0 . . . 0⟩
to |1 . . . 1⟩. Consequently, an n-qubit state |ϕ⟩ can be rep-
resented as: |ϕ⟩ =

∑2n−1
i=0 ai |i⟩, where

∑2n−1
i=0 |ai|2 = 1.

2.2. Quantum Gates

In the domain of quantum computing, fundamental op-
erations are represented as quantum gates. The quantum
circuits and programs execute a sequence of quantum gates
to manipulate qubits towards desired states.

A quantum gate U must be unitary, i.e., UU† = U†U =
I , where U† signifies the conjugate transpose of U , and I
is the identity matrix. Operating on a qubit |ψ⟩, a quantum
gate U transforms it as |ψ⟩ → U |ψ⟩. Employing the matrix
representation, n-qubit quantum gates are expressed as 2n×
2n matrices. Quantum gates can be classified as single-qubit
gates or multi-qubit gates. U3 gate is one general single-
qubit gate that is parameterized by 3 Euler angles. Some
other single-qubit gates include Pauli-X gate: a single-qubit
gate similar to the classical NOT gate, flips |0⟩ to |1⟩ and
vice versa; RZ gate: a phase shift between |0⟩ and |1⟩. Unlike
classical computing, multi-qubit gates can have the ability
to create quantum entanglement. One notable example is
the CNOT gate, also known as the CX gate, a two-qubit
gate that applies a Pauli-X gate to the target qubit if the
control qubit is in state |1⟩, otherwise, it remains unchanged.
Another example is the control U3 gate, which also uses one
bit to control the application of the U3 gate.

Matrix representations of some gates are presented be-
low, adhering to the qubit order specified by Qiskit [25]:

U3(θ, ϕ, λ) =

[
cos

(
θ
2

)
−eiλ sin

(
θ
2

)
eiϕ sin

(
θ
2

)
ei(ϕ+λ) cos

(
θ
2

)]



RZ(θ) =

[
e−i θ

2 0

0 ei
θ
2

]
, CX =

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


Research proved that any unitary quantum gate can be

approximated with minor error using a small set of quantum
gates [26]. Consequently, contemporary quantum computers
typically support a limited set of basis gates. By amalga-
mating these basis gates, they can emulate other quantum
gates. These fundamental gates, termed native gates, serve
as pivotal configurations for quantum processors.

2.3. Control Pulses

Microwave pulses usually serve as the primary means
to control qubits. A control pulse is analog and specified
by a set of parameters, such as the envelope, frequency, and
phase. The envelope delineates the shape of the signal gener-
ated by the arbitrary waveform generator (AWG), a standard
laboratory instrument; frequency specifies a periodic signal
utilized to modulate the envelope signal; phase manipulates
the frame phase of the equipment. Together, these compo-
nents constitute the output signal directed towards the qubit.

Envelopes are often discretized into time steps, with
each value denoting the amplitude at a specific time step.
An alternative approach involves parameterized pulses de-
termined by predefined shapes. These parameters typically
encompass the duration (pulse length), amplitude (relative
pulse strength), and other factors dictating pulse shape.

Pulses for all native gates on current quantum computers
are often predefined. Due to the constantly changing envi-
ronment, the physical properties of quantum computers are
also continuously varying. As a result, their parameters are
regularly updated via automated measurements and calibra-
tions to maintain high fidelity over time.

2.4. Pulse-Level Circuit Description

Quantum circuits described by quantum gates are gate-
level circuits. The underlying implementations of the oper-
ations on hardware, typically microwave pulses introduced
before, are hardware- and technology-dependent. To realize
quantum circuits, precise control pulses corresponding to
each gate must be generated and transmitted to the qubit.
Besides, other information on how they are arranged and
where to apply also needs to be specified, such as the starting
time steps of pulses, and to which channels pulses should
be applied. This comprehensive set of data, or the pulse
configuration, along with other pertinent details, constitutes
the pulse-level circuit description.

Pulse-level circuits hold significant value for users. First,
they facilitate circuit verification and provide insights into
execution specifics, revealing the actual operations of quan-
tum circuits. Moreover, pulse-level circuits are actively in-
vestigated for optimization and applications as mentioned in
Section 1, improving both the expressivity and efficiency.

2.5. From Gate-Level to Pulse-Level

Typically, quantum circuits and programs are defined
using gate-level primitives, with quantum software devel-
opment kits (SDKs) such as Qiskit [25], Amazon Braket
Python SDK [12], Q# [13], Cirq [27].

Similar to compilation in classical computing, gate-level
quantum circuits often need to be modified so that they
satisfy the requirements of specific hardware. This process
involves decomposing non-native quantum gates into native
gates, optimizing gates by grouping and eliminating redun-
dant gates, mapping logical qubits to physical qubits, routing
circuits within the constrained topology, etc.

The next step is to generate the actual operations, usually
pulse-level circuits. This process is like assembling in clas-
sical computing. Leveraging pre-calibrated data for native
gates on individual qubits or qubit pairs, microwave pulse
sequences are generated and tailored for specific hardware.
Besides native gates, arbitrary pulses can also be included.
Consequently, pulse-level circuits can be readily executed
on the target quantum computer.

Pulse-level circuits are necessary because they specify
the actual operations on quantum computers. While they
are not public on all quantum computers due to reasons like
complexity, an increase in exposing it has been seen, in-
cluding IBM, Amazon, OpenPulse, PennyLane, etc. Though
the advantages of pulse-level circuits are widely explored,
security and privacy aspects have not been researched, which
are the focus of this paper.

3. Threat Model

In this paper, we introduce attacks targeting quantum cir-
cuits that incorporate pulse-level controls. Typically, pulse-
level controls are integrated into gate-level circuits using
user-defined custom gates. Functioning similar to normal
quantum gates, custom gates require specifying the number
of qubits and the target qubits for application within a
quantum circuit. The detailed operations of custom gates are
either independently specified as a series of quantum gates
or linked to pulse-level controls. Custom gates can be re-
cursively defined to encompass another custom gate. In this
section, we describe the threat model and the stealthiness
and classification of the attack.

3.1. Assumptions

The target of the attacks is quantum circuits that contain
custom pulse-level controls. We assume that an attacker
is able to modify the specification of the control pulses
on victims’ quantum circuits. We assume that after the
malicious modifications have been performed unknowingly
to victims, victims execute the circuit, thus triggering the
operation of the modified pulse gates. In this paper, we
assume the attackers can perform malicious modifications,
such as modifying the local code to directly change it, or
they can leverage malicious toolchains such as malicious
compilers to secretly change the pulse information, or they



Victim Level Victim Verification Capability Vulnerability to Our Attacks

Gate-Level Gate-Pulse
Interface

Pulse-Level
Syntax

Pulse-Level
Semantics Channel Attack Pulse Attack

Level 1 Can Attack Can Attack
Level 2 ✓ Can Attack Can Attack
Level 3 ✓ ✓ — Can Attack
Level 4 ✓ ✓ ✓ — Algorithm-Dependent
Level 5 ✓ ✓ ✓ ✓ — —

TABLE 1: Victim classification based on victim’s capabilities to verify gate-level and pulse-level circuits, and attacks that
can be effectively applied. Checkmark means the victim has the corresponding capability to verify the code at that level.

can alter public repositories which victims use to download
the code, such as through supply chain attacks.

While it is conceivable for attackers to modify other
parts of quantum circuits, and this could be combined with
our attacks, we assume attackers only alter pulse configu-
rations for quantum circuits. This assumption is rooted in
the clandestine nature of the attack. We posit that detecting
the installation of the attack becomes more challenging for
victims when only pulse configurations are modified, as
opposed to modifications on other parts. For instance, gate-
level modifications can be easily detected through methods
performing exact match checks of previous and current
quantum circuits, such as quantum computer antivirus [28],
[29] or maybe simply the hash check. Conversely, modifi-
cations on pulse configurations remain more secret.

3.2. Attack Stealthiness

All victims are assumed to understand gate-level circuits
and any higher levels above gate-level circuits, but their ca-
pabilities are distinguished by how much they can verify the
pulse-level circuits. The verification of pulse-level circuits
requires the two-fold explainability of pulses:

1) Syntax: relations between pulses and logic operations,
more specifically, the effect of pulses on qubits. E.g.,
the pulse rotates a qubit 90 degrees along the X axis.

2) Semantics: relations between pulses and meanings or
motivations. E.g., applying a Hadamard gate and a
CNOT gate typically creates an entanglement state.

Syntax verification is heavily dependent on translating
pulses into gates or operations, which is specific to the
hardware but applicable to all quantum programs executed
on that hardware. Conversely, semantics verification is con-
tingent on the specific quantum algorithms and the un-
derlying logic of their designs, which is general across
different hardware platforms but presupposes that the pulses
are syntactically correct.

The verification process at both levels poses significant
challenges, thereby enhancing the stealthiness of our attacks
introduced in this paper.

3.2.1. Challenges of Syntax Verification. The pulse-level
controls are similar to embedded assembly or machine code
in classical computing, enabling direct low-level hardware
control. However, unlike the fixed and limited number of
instruction set architectures in classical computing, pulses

are defined by analog data, such as the frequency and
amplitude of electromagnetic waves. We present three major
challenges for the syntax verification:

• Interpretability: Due to analog characteristics, pulse data
is not easily interpretable by humans. Moreover, since
this data is hardware-dependent, different qubits possess
distinct calibration data. The same analog data does not
necessarily have the same functionality on two qubits or
even the same qubits under varying environmental condi-
tions. This complexity hinders victims from understanding
the actual impact of the pulses.

• Volatility: The qubit properties are frequently chang-
ing [30], and regular machine calibrations on cloud plat-
forms accentuate the timeliness of pulse data. This means
that pulse data may quickly become outdated, necessitat-
ing timely re-calibrations. Although changes in a short
time frame may be minor, they can accumulate if not
properly calibrated, prompting victims to seek updated
pulse data. The time interval for updates depends on the
hardware and properties, ranging from days to months,
which is not too short to invalidate the attack quickly nor
too long to free circuits from updates.

• Cost: Calibration experiments are resource-intensive and
costly. In addition, victims may find these experiments
complex, leading them to rely on quantum circuit
providers for detailed experiment information. Even if
victims conduct calibrations themselves, the intricacy of
the process may still drive them to seek assistance from
quantum circuit providers, and attackers may install at-
tacks in these places rather than the pulse data directly.

3.2.2. Challenges of Semantics Verification. A key dis-
tinction between quantum programs and classical programs
that complicates semantics verification is the nature of oper-
ations in quantum programs, which focuses on controlling
the evolution of qubits. This results in control flows that
are more abstract and challenging to comprehend. While
this complexity is significant, it is not the only hurdle.
Another critical issue is that not all quantum algorithms are
inherently interpretable. For instance, parametric algorithms
such as quantum deep learning or quantum approximate op-
timization algorithms have parameters trained to fit specific
data sets. These parameters do not possess an explainable
meaning, adding another layer of difficulty.



3.3. Victim Classification

Based on the victim’s capabilities to verify the pulse-
level circuits at the syntactical and semantic level, victims
are classified into 5 levels as shown in Table 1:

1) Level 1: the weakest victims that cannot verify either
gate-level circuits or pulse-level circuits.

2) Level 2: victims that can only verify gate-level circuits.
In Section 4, we propose the channel attacks which
leverage the fact that the gate-level circuits are all the
same but the underlying pulse-level circuits can be
arbitrarily modified. Therefore, for level 1 victims, they
cannot detect the channel attacks.

3) Level 3: victims that can verify the gate-level circuits
and check pulse-level circuits, but they cannot verify
the pulse-level circuits at the syntactical level. Notice
that victims are assumed to understand the quantum
algorithms at the logic level in this case, but they still
cannot verify the pulse-level circuits at the semantic
level because verification at the syntactical level is the
precondition. In Section 4, we propose the pulse attacks
which modify the underlying pulse configuration.

4) Level 4: victims that can verify the gate-level circuits
and pulse-level circuits at the syntactical level, but they
cannot verify the pulse-level circuits at the semantic
level. The pulse attacks may apply here depending on
the algorithm’s interpretability.

5) Level 5: the strongest victims that can verify the gate-
level circuits and pulse-level circuits at both the syn-
tactical level and the semantic level.

Level 1 victims are too weak, and thus they are not the
focus of this paper. On the contrary, level 5 victims are too
strong. Even though they can defend themselves from the
attacks proposed in this paper, we claim that the assumption
of the capability to verify the pulse-level semantics for
all quantum algorithms is too demanding and may not be
possible, such as for quantum neural networks. Therefore,
we mainly discuss the level 2 to 4 victims in this paper.

4. Proposed Attacks

In this section, we present a classification of our attacks.
The pulse-level controls are typically integrated into quan-
tum circuits through user-defined custom gates according to
most current quantum quantum software development kits.
The custom gate, a gate-level operation similar to a standard
quantum gate, can encapsulate pulse-level controls within
its structure. Consequently, the attacks can be inserted at
two primary places: the interface between the gate-level and
pulse-level description, which we refer to as the channel
attacks, and the detailed configuration of the pulse-level
controls, which we refer to as the pulse attacks. Besides
the distinction at the definition level, our attacks can also
be performed together with themselves or with other attacks,
or be abused as the approach to realize other attacks, which
we refer to as the compound attacks. The illustration of our
new attacks is shown in Figure 2.

4.1. Channel Attacks

The channel attacks stem from inconsistencies at the
interface between the gate-level quantum gate and the pulse-
level pulses. We have identified a prevalent flaw in most cur-
rent quantum software development kits, where the match-
ing between the qubits of the quantum gate and the channels
of pulses is not adequately verified and sufficiently enforced.
This defect leads to two types of attacks, qubit plunder and
qubit block. In addition, the problem that the quantum gate
and the pulses are considerably loosely combined entails the
third type of attack, qubit reorder:
• Qubit Plunder: Qubit plunder arises directly from the

misalignment between the qubits of the quantum gate and
the channels of the underlying pulses. In most quantum
quantum software development kits, custom gates can be
applied to any qubit set without corresponding checks on
the channels to which the pulses are applied. For instance,
a custom gate may be designated for qubits 0 and 1,
while the underlying pulses could be intended for channels
corresponding to qubits 2 and 3. Victims of this attack
suffer when only gate-level verification is performed, as
channels can be arbitrarily selected. Besides, this attack
can be performed on any type of channel. With qubit
plunder, a single-qubit quantum gate could maliciously
affect control or readout channels, leading to unwanted
entanglement or measurements. This attack may be de-
tected when the plundered channels are already occupied
with pulses, but the pulse overlap error does not clearly
point to the root cause of the problem.

• Qubit Block: In contrast to qubit plunder, qubit block
involves claiming more qubits at the gate level than the
number of channels to which pulses are applied. While
theoretically inconsequential in perfect quantum comput-
ers or with error correction, this attack prolongs execu-
tion time. On current NISQ (Noisy Intermediate-Scale
Quantum) computers, it can induce qubit decoherence,
causing unidirectional decay to |0⟩. For instance, one can
specify an empty custom gate with only a delay inside,
and attackers can control the decay rate and hence the
results by manipulating the delay time of the custom gate.

• Qubit Reorder: Apart from misalignments between gate-
level qubits and pulse-level channels, the loose definition
of custom gates relative to pulses allows the reordering
of the encapsulated pulses. Custom gates merely serve as
containers to store pulses and lack mechanisms to enforce
the arrangement of pulses underneath. For instance, the
direction of a custom CNOT gate can be exchanged by
exchanging channels (typically also need to add or remove
some pulses together). Consequently, channels associated
with multi-qubit gates can be arbitrarily permuted.

The inconsistency between gate-level and pulse-level in
most SDKs has not been explored before and thus can
lead to security attacks. We claim the attacks stem from
the inconsistency between the high-level and low-level ab-
stractions, which appear to be problems in many fields.
For instance, Spectre [31] and Meltdown [32] in classical
computers are mainly due to the inconsistency between the
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Figure 2: Illustration of our attacks.

program instructions and microarchitecture. In comparison,
for the channel attack, attackers leverage the inconsistency
between program instructions (gates) and actual microarchi-
tecture instructions (pulses).

4.2. Pulse Attacks

Compared with the channel attacks, the pulse attacks
represent a direct manipulation of the underlying pulse data.
They involve malicious modifications to various features that
specify the pulses controlling the qubits. Each of these fea-
tures can be exploited by attackers to execute their attacks.
For a comprehensive understanding of the low-level pulse
controls on qubits, readers are directed to [33]. The attacks
are characterized by the mismatch between the original pulse
data and the maliciously altered pulse data:
• Timing Mismatch: This type of attack introduces syn-

chronization issues by altering the timing of pulses. One
type of timing attack is to change the duration of the
pulses and thus change the influence of the pulses, which
can cause the operation to be different or also cause the
decoherence similar to the qubit block. However, due to
the duration of the pulse being part of the waveform of
the pulses, we classify this type of attack as waveform
mismatch described in the following. The precise timing
of pulses and delays is crucial in the pulse definition,
complicated further by constraints such as sampling time
intervals, acquire alignment, pulse alignment, and gran-
ularity of the pulse. For instance, the starting time of a
pulse must be the minimum common multiple of acquire
alignment and pulse alignment, and the duration of a pulse
must be multiples of the pulse granularity. Otherwise, the
synchronization problem will cause the qubit to oscillate
between |0⟩ and |1⟩. Attackers can exploit these con-
straints by introducing slight delays to displace pulses
from the allowed increments, thereby affecting results.
Fortunately, while earlier versions of Qiskit and IBM

machines overlooked timing checks, subsequent updates
have addressed this vulnerability. We list here to warn this
type of attack when designing the systems.

• Frequency Mismatch: Quantum states |0⟩ and |1⟩ are
encoded using energy levels. The frequency of a pulse
must correspond to the energy difference between these
energy levels. The fundamental principle in quantum me-
chanics dictates that only pulses with frequencies match-
ing the energy difference between specific energy levels
of the qubit can effectively control it. Therefore, attackers
can manipulate the influence of a pulse by modifying its
frequency. For instance, altering the frequency of a pulse
to the forbidden range so that the pulse can be disabled,
or to match the unwanted energy levels could drive qubits
to another state, similar to higher-energy state attack [24],
compromising the integrity of the quantum computation.

• Phase Mismatch: In pulse-based quantum computing,
the phase of a pulse is a crucial parameter that determines
the rotation applied to the qubit. By altering the phase,
attackers can effectively induce rotations akin to specific
quantum gates, such as the rotational-Z gate commonly
used for manipulating qubit states. This manipulation
exploits the fact that phase changes can rapidly update the
frame tracking the qubit state, allowing for instantaneous
and nearly error-free rotations. Attackers may strategically
introduce phase shifts at specific points in the pulse
sequence to disrupt the intended quantum computation,
leading to erroneous results. One advantage of phase
mismatch is that it can realize any gate operation: any
unitary U ∈ SU(2) can be decomposed as [34]:

U(θ, ϕ, λ) = Zϕ−π/2Xπ/2Zπ−θXπ/2Zλ−π/2 (1)

where Zθ is the rotational-Z gate with the rotational angle
θ, which is the same as the phase of the pulse on many
quantum computers, and Xπ/2 is the rotational-X gate
with rotational angle π/2, or SX gate with a global phase.



• Waveform Mismatch: The waveform of a pulse, repre-
senting the envelope function of its shape, influences the
dynamics of qubit manipulation. A detailed understanding
of pulse waveforms is essential for controlling qubit rota-
tions accurately. A simple model mentioned in [33] (Equa-
tion 91) gives the Hamiltonian: H̄d = −Ω

2 V0s(t)(Iσx +
Qσy), where the I-component is the “in-phase” pulse that
corresponds to rotations around the x-axis, and the Q-
component is the “out-of-phase” pulse that corresponds
to the rotations about the y-axis. The qubit satisfies the
Schrödinnger equation H |ψ(t)⟩ = i h̄ ∂

∂t |ψ(t)⟩. Simply
speaking, the amplitude of the I and Q components
correspond to the rotational angle along the x and y-
axis respectively. Attackers can exploit this by tampering
with the waveform, thereby controlling the gates applied
to qubits. For instance, by modifying the amplitude or
shape of the waveform, attackers can induce unintended
rotations or interfere with the coherence of qubit states.

4.3. Compound Attacks

The channel attacks and pulse attacks can be used as
building blocks for compound attacks. In compound attacks,
the individual channel attacks or pulse attacks are used
as a building block to achieve higher-level attack goal.
We list several interesting compound attacks that can be
implemented by leveraging our attacks:

• Qubit Flip: This attack aims to flip the state of a qubit,
thereby altering its computational output.

• Entanglement Injection: Attackers may seek to inject
unwanted entanglement between qubits, disrupting the
coherence of the quantum system.

• Decoherence Amplification: Decoherence amplification
attacks aim to accelerate the decoherence process in
qubits, leading to faster loss of quantum information
and degradation of computational fidelity.

• Trojan Attack: The control qubit can be used as the
trojan qubit to trigger the gates.

• Measurement Manipulation: manipulate the end-of-
circuit or mid-circuit measurement results.

• Multi-Tenant Attack: entanglement can be also cre-
ated in the multi-tenant environment. Though multi-
tenant quantum computers are not supported yet, this
paradigm is actively researched [35], [36], [37], [38],
and our attacks can be applied in terms of multi-tenant
use cases, especially with the channel attacks.

Moreover, our attacks can be combined with other attack
vectors or leveraged as a means to facilitate other attacks.
Below is an incomplete list based on related works:

• Crosstalk Attack: Injecting pulses with significant
crosstalk effects or modifying pulse frequencies to
exacerbate crosstalk effect can lead to crosstalk at-
tacks [39], [40], [28], [29], [41], [42], where the parallel
execution of some gates leads to larger errors.

• Higher-Energy State Attack: Driving qubits to a higher-
energy state outside the two-level computational system
|0⟩ and |1⟩, which inherently requires pulse opera-

tions, enables attackers to execute higher-energy state
attacks [24] that can invalidate normal quantum gates.

• “Horizontal” Information Leakage: Modifying the
measurement pulse can lead to “horizontal” informa-
tion leakage [43], [44], [45], [46] in quantum circuits
that exists through executions and interferes the input
states of the next execution.

• Power Attack: Pulses are related to power traces of
quantum circuits [47], [48], and thus our attacks can
influence the equipment power features.

• Fault-Injection: Changing the pulses at the target lo-
cations can lead to fault-injection [49], [50]. This can
also be done by reasoning the relations between the
pulses and control electronics [51].

By leveraging the flexibility and intricacies of pulse-based
quantum computing, attackers can orchestrate compound
attacks that exploit multiple vulnerabilities in quantum sys-
tems simultaneously, posing significant challenges to quan-
tum security protocols.

5. Attack Demonstration

In this section, we present attack implementations. Our
attacks are general, so there are infinite implementations.
We first propose one straightforward example of qubit flip.
Then we demonstrate several algorithm-specific examples.

5.1. Qubit Flip Attack Example

Given the extensive control over quantum circuits af-
forded by the attacks, one generic approach involves the
attacker adding an extra layer of custom gate on all qubits
either before measurement to manipulate final results or after
the beginning to control input states. Here, we present one
straightforward implementation for each attack to realize
qubit flip. The implementations are shown in Figure 3, but
the attack clearly extends beyond mere qubit flip.

5.1.1. Qubit Flip Attack using Channel Attacks. The
power of channel attacks diminishes in the following order
due to their control abilities:
• Qubit Plunder: If an additional channel is provided,

qubit flip through qubit plunder can be realized by manip-
ulating pulse movement. A direct configuration involves
adding a layer of two Pauli-X pulses on each qubit. Two
Pauli-X gates are the same as the identity gate, leaving the
qubit unchanged. The qubit flip occurs when one of the
Pauli-X pulses is moved to an unused channel, altering
the probability between |0⟩ and |1⟩ on that qubit.

• Qubit Reorder: Similarly, results can be altered by re-
ordering pulses. A straightforward scheme entails adding
two additional Pauli-X gates on one qubit, incorporating
one of the Pauli-X gates in the custom gate. Thus, keeping
the pulse does nothing, while reordering the pulses flips
two qubits simultaneously. This is a weaker attack than
the qubit plunder in that it can only flip an even number
of qubits simultaneously, while qubit plunder can flip any
qubit independently under the condition of extra channels.
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Figure 3: Implementations of qubit flip with channel attacks
and pulse attacks. The grey block in the channel attack section
represents the custom gate that is manipulated in the attacks.

• Qubit Block: Qubit block is the least potent, incapable of
arbitrary result modification. If the qubit is perfect with no
decoherence or can be error-corrected, it cannot modify
the results. One way as described previously is to add a
long delay before the measurement, and when accounting
for decoherence, qubits will decay to |0⟩.

5.1.2. Qubit Flip Attack using Pulse Attacks. Because
pulse attacks can directly control the pulses, they are more
powerful than channel attacks:
• Timing Mismatch: In supported platforms, synchro-

nization leads to qubit to oscillate between |0⟩ and |1⟩.
Therefore, the results can be easily controlled by manipu-
lating the number of units for the delay, though the ability
is limited by the granularity of the machine. How the
number of units for the delay corresponds to the state
change can be easily measured with simple experiments.

• Frequency Mismatch: Only frequencies correlated to
energy between two energy levels can lead to energy level
transitions, which means the operation of one gate can be

easily disabled by tuning the frequency into the forbidden
range. The scheme can be the same as qubit plunder by
replacing the moving of pulse to changing of frequency,
i.e., adding two Pauli-X pulses and sandwiching one
frequency setting between them, and setting the frequency
to the forbidden range when a qubit flip is desired.

• Phase Mismatch: Qubit flip through phase change can
be implemented with the identity X = H · RZ(π) · H .
The custom gate is composed of 3 gates, the Hadamard
gate, one Rotational-Z gate, and another Hadamard gate.
When setting the phase, i.e., setting the rotational angle
of the Rotational-Z gate, to be 0, the gate is identical to
the identity gate. However, when setting the phase to be
π, the gate is identical to the Pauli-X gate.

• Waveform Mismatch: Waveform attack is the most
flexible attack. The gate can be disabled by setting the
amplitude to 0, and the rotational angle can be tuned
by easily setting the waveform. The qubit flip can be
easily realized by adding one empty placeholder pulse
and changing the waveform of the placeholder pulse to
the Pauli-X pulse when the qubit flip is wanted.

5.2. Algorithm-Specific Attack Examples

While the aforementioned universal implementations are
simple, straightforward, and applicable to all kinds of quan-
tum circuits, they are easily detectable through in-depth
circuit examination, even by humans. For example, custom
gates with only two Pauli-X pulses on each qubit before
measurement usually make no sense within the quantum
circuit. Though shifting the custom gates to the middle may
be feasible and make detection less obvious, it typically
remains implausible for arbitrarily targeted attacks. Given
that the configuration of custom gates hinges on the specific
quantum algorithm, such as decisions on pulse utilization
and placement, a universal scheme for installing attacks to
control results may not exist. Nonetheless, mapping between
pulses and results may be acquired through methods such
as brute force or trial and error.

A more clandestine approach involves implementing
the quantum algorithm as a pulse-optimized or parametric
quantum circuit, as discussed in Section 1. For instance,
pulses employed for quantum circuit decomposition, com-
pilation, and optimization exhibit complexity and modifi-
ability. These pulses are typically optimized for specific
quantum gates, such as Toffoli gates; or tailored for par-
ticular objectives, such as the multiply-controlled gate in
Grover’s search. Although these pulses serve fixed goals,
they necessitate periodic updates due to changes in the
physical properties of quantum computers, as explained in
Section 3.2.1. Another instance is pulse learning for varia-
tional quantum algorithms like quantum machine learning,
where the parametric nature involves learning features of
pulses during the process. These parameters, akin to weights
in neural networks, are challenging to interpret individually,
and may be totally different when training again depending
on the initial values, making them susceptible to our attacks.
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(a) Quantum circuit of quantum teleportation. Alice (blue block) wants to transport her quantum state
to Bob (green block), with the coupling gate provided by Eve (red block). Eve can tamper the pulses
to achieve many goals, some of which are listed in the grey block.
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Figure 4: Example demonstration of the algorithm-specific attack on quantum teleportation.

In this section, we provide some examples to demon-
strate our attacks with algorithm-specific implementations.
Because the stealthiness of the attack is highly dependent on
the capability of the victims as discussed in Section 3.3, we
explore the attacks on level 2 to 4 victims: channel attack
on quantum teleportation for level 2 victim; pulse attack on
Grover’s search for level 3 victim; pulse attack on quantum
neural networks for level 4 victim. The experiments for
level 2 and 3 victims were done on ibm_osaka on IBM
Quantum, which is a 127-qubit quantum computer, while the
experiments for level 3 victims were done on simulators.

5.2.1. Level 2 Victim: Channel Attack on Quantum
Teleportation. This demonstrates the channel attack to ma-
liciously couple and decouple qubits.

One of the most important features that differentiate
quantum computing from classical computing is quantum
entanglement. Qubits can be coupled together and the mea-
surement result will depend on how they are connected,
rather than their quantum states independently. Quantum
entanglement is the feature that is used in almost every
quantum algorithm. One example of using quantum entan-
glement is quantum teleportation [52], which is a technique
for transferring quantum information from a sender at one
location to a receiver some distance away. The quantum
circuit for the demonstration is shown in Figure 4a. Alice
prepares her quantum state on q2, and this quantum state can
be transmitted to Bob through the circuit when the coupling
gate in the middle is the CNOT gate. However, assuming
that the coupling gate is provided as a service in the form
of a custom gate with pulses that are provided by Eve, then
Eve can perform many types of attacks to influence the
results. For instance, we show that Eve can secretly couple
or decouple qubits.

In our demonstration, the gate-level circuit is the same
for all cases, so the channel attack is hidden from the gate-
level verification. Specifically, Eve can perform Coupling
q2 and q1 by applying the CNOT pulse even though the
coupling gate is applied on q2 and q3, Decoupling by simply
doing nothing, or Del H by applying the pulse of Hadamard
gate to cancel Hadamard gate after the coupling gate.

In the experiment, we use a rotational-X gate with angle
θ and Pauli-Z gate to prepare the state for transmission:
|ψ⟩ = cos θ

2 |0⟩ + sin θ
2 |1⟩. The probabilities of measur-

ing |1⟩ with the above pulse configurations are shown in
Figure 4b. “Theory” shows the theoretical results with no
errors, and “Benchmark” shows the results with the original
quantum teleportation circuit.

“Coupling: Eve” shows Eve’s measurement result when
Eve performed the “Coupling” gate, and it shows that Eve
can secretly copy the quantum teleportation circuit to steal
the quantum state in transmission, while “Coupling: Bob”
shows that Bob cannot receive any state because the cou-
pling of q2 and q3 is secretly occupied by Eve. Similarly,
“Decoupling” does not couple q2 and q3, so Bob cannot
receive the quantum state. Although “Del H” shows the
same probability as the benchmark, the correct state should
be a pure state |ψ⟩ = α |0⟩+β |1⟩, but Bob actually receives
a mixed state of |0⟩ with probability |α|2 and |1⟩ with
probability |β|2. This attack can be successful even though
we assume Bob can do simple checks on the measurement
results which behave the same as the correct results.

5.2.2. Level 3 Victim: Pulse Attack on Grover’s Search.
This demonstrates the pulse attack to manipulate results.

In the experiment, we implement 2-qubit Grover’s
search [53] as the parametric quantum circuits. The whole
Grover operator is provided as one custom gate. Grover’s
search is a quantum algorithm for unstructured search that
finds with high probability the unique input to a black box
function that produces a particular output value using just
O(

√
N) evaluations of the function. The parameters we used

are the quantum state to search in the computational basis,
i.e., |00⟩ , |01⟩ , |10⟩ , |11⟩, and we assume that attackers
provide this parametric Grover operator.

For different search states, the Grover operator is differ-
ent, as shown in Figure 5a. However, only several gates
are different, and all of them are rotation-Z gates. The
percentages of different gates for search states in the com-
putational basis are shown in Figure 5b. It shows that only
a small portion of the quantum circuit is different, and the
percentage is even smaller when counting pulses rather than
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Figure 5: Demonstration on 2-qubit Grover’s search.

gates. Therefore, attackers can only modify a small portion
of the Grover operator by phase mismatch to change the
search states. The results are shown in Figure 5c. Inside the
whole custom gate for the Grover operator, only the phases
of 4 gates (8 underlying pulses) are modified, and the output
is successfully redirected to the desired attack states.

5.2.3. Level 4 Victim: Pulse Attack on Quantum Neural
Networks. Quantum algorithms are also often implemented
with parameters to control the quantum circuits, such as
the rotational angles for quantum gates. The parametric
quantum circuits are widely used in quantum algorithms
that require training or variational operations like quantum
machine learning and quantum approximate optimization
algorithm [20], [21], [22], [23]. The parameters can also
be parameters for pulses, as they can be directly learned
and the quantum circuits can be directly optimized at the
pulse level. Similar to classical neural networks, quantum
neural networks include many trainable weights, and the
final trained weights are not necessarily explainable. In the
following, we implement one quantum neural network for
image classification and evaluate the pulse attack on it.

We implement the quanvolutional neural networks pro-
posed in [54], which is similar to the convolutional neural
networks (CNN) in classical computing [55]. More specif-

ically, we implement the example quanvolutional neural
network provided by TorchQuantum [56]. The architecture
is shown in Figure 6a. We use MNIST [57] as the dataset,
which is a database of handwritten digits from 0 to 9. Each
image has 28×28 pixels. The quanvolutional layer is a 4-
qubit circuit that includes 3 parts: (1) Encoder: one rotational
Y gate on each qubit where each rotation angle is one image
pixel value. This is used to encode the classical data into
quantum circuits. (2) Kernel: one U3 gate on each qubit and
one control U3 gate on each adjacent qubit pair. Each U3
gate includes the 3 Euler angles to rotate the qubit, and the
control U3 gate is the controlled version of the U3 gate. All
3 angles in each U3 and control U3 gate are trainable param-
eters to be learned during the training process. The kernel
is applied 5 times in a row. (3) Measurement: the quantum
circuit results are measured, and the expected values on each
qubit will be the output of the quanvolutional layer. Other
parts are the same as classical neural networks, including the
average pooling layer before the quanvolutional layer and
the flatten and fully connected layers after it. Notice that for
the training efficiency of QNN, many operations are done to
decrease the computational complexity, including the large
6×6 average pooling layer, images with only 4 labels from
0 to 3, and in total 1000 images are used for training and
validation. The experiments are done in the simulators. The
training process is shown in Figure 6b. With 100 epochs, the
model reaches an accuracy of 93.7% on the training dataset
and 89.6% on the validation dataset.

First, the influence of weight changes on the quanvolu-
tional layer on the accuracy, and the corresponding norm
differences, are experimented with. The norm difference
is computed as: view 3 parameters in a U3 gate as a 3-
dimensional vector, compute the norm of the change divided
by the norm of the original vector. We evaluate four ways
to change weights: (1) All Weights: all weights are added
by the ratio multiplied by their gradients; (2) All Weights
with Cutoff: if one U3 gate norm difference is larger than
a threshold, then its weights will not be changed. In the
experiment, the threshold is set to be 0.05. (3) One Gate:
only the first U3 gate is changed. (4) One Weight: only
the first rotation angle of the first layer is changed, and the
ratio in the figure is the absolute value of the change. The
gradients are computed by forwarding only the first epoch
of the training dataset.

The results are shown in Figure 7, which demonstrates
that with a small change, the model results can be influenced
much. With a maximum of around 10% difference and
a mean of 3% difference on all parameters, the accuracy
drops from 89.6% to 26.8%. Moreover, with the 5% cutoff
threshold to limit the maximum difference, only a mean
of 2.7% change, the lowest point in the figure shows that
the accuracy can be decreased to 32.3%. If changing most
weights of the layers is difficult, the accuracy decrease to
60% can also be realized with around 25% change for the
first rotational gate or 35% change for only one weight in
the first layer. Note that we did not do the experiments to
find the best weight to change, but arbitrarily chose the first
layer. With careful explorations, a smaller change in the
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Figure 6: The quanvolutional neural network (QNN) architecture and training data in the experiment. The quanvolutional layer is
computed on quantum computers, while others are the same and computed in classical computers.
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weight may be found and thus the attack can be more covert.
More secret attacks can be implemented. Rather than

directly changing the weight and destroying the model, some
attacks such as the backdoor attack [58], [59] can insert
trojan into the model, leading to malicious results only when
trojan is triggered. We implement a simple backdoor attack
on the previously trained model. We mixed 20% backdoor
samples into the training dataset and fine-tuned the model.
The trojan pattern is a 3×3 white pattern on the upper left
of the figure. The trojan can be other patterns. This pattern
is arbitrarily chosen, and it can be smaller if the average
pooling layer is smaller or removed. Images with the pattern
are arbitrarily assigned to target 0.

Figure 8 shows the fine-tuning results. Without fine-
tuning, the model has an accuracy of 21.6% on the backdoor
validation data. When training around 40 epochs, the model
is well-backdoored. The accuracy of the clean training data
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Figure 8: The training accuracy, loss, and norm difference in the
fine-tuning process of the backdoor attack.

and validation data is 90.9% and 87.1%, with 2.8% and
a 2.5% drop from the original model, while the accuracy
of the backdoor training data and validation data is 87.0%
and 89.0%, achieving similar accuracy as the clean data.
The changes to realize the backdoor attack are small, with
a maximum difference of 4.1% and a mean difference of
1.8%. The figure shows that further training will not change
the weights and accuracy much, i.e., with around 2% change,
the model can be inserted with a trojan.

6. Defense

In this section, we propose one framework to defend
from the attacks. The verification of quantum programs can
be inspired by the verification of classical programs, though
with some peculiarities. Many traditional methods can be
used and may be helpful to some degree. For example,
the quantum program can be checked and distributed with
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Figure 9: Illustration of the defense. With the quantum circuit (and pulse configuration included) as the input, the channel verification can
detect the qubit plunder and the qubit block attacks by checking the exact match of the gate-level qubits and the pulse-level channels. For
the qubit reorder and the timing mismatch attack, we propose that the circuits must be associated with the previous pulse configuration for
instructions comparison. For the remaining attacks, the previous and current calibration data are also needed for parameter comparison.

associated hash codes such as SHA256. This is a common
way of distributing classical software. This could be helpful
when the properties of quantum computers do not have a
big change, similar to classical computing. However, as
we explained in Section 3.2.1, the volatility of quantum
computers may make this method fruitless because the
physical properties of the quantum hardware may undergo
big changes, and thus the same pulse configuration may not
have the same functionality. On the other hand, instead of
resorting to the provided pulse data, users may calibrate by
themselves to get the up-to-date pulse data. Nevertheless, the
cost issue described in Section 3.2.1 may discourage users
from doing this, and users may also need to acquire the
programs for calibration from attackers and these programs
may also be tampered with by attackers.

In fact, not all of the proposed attacks are due to the
same reasons. The cause for the attacks can be divided into:

• Software flaw: This is the cause of the qubit plunder and
the qubit block. These two attacks arise from the fact that
current quantum software development kits overlook the
correspondence between gate-level qubits and pulse-level
channels. As a result, they can be detected and fixed at
the software level.

• Interface defect: This is the cause of the qubit reorder.
The current software design for adding pulse-level con-
trols is deficient as we explained before. The custom gate
is just a container used to store the pulse-level controls.

Even though we can enforce the correspondence of gate-
level qubits and pulse-level channels, we still cannot guar-
antee the functionality of pulses inside. This attack must
be detected if the function of the custom gate is specified
beforehand. The loose interface design in most current
SDKs may be due to the consideration of convenience in
development. The custom gate with the abstract function-
ality can be applied to any qubits, while the underlying
pulse configuration is qubit-dependent. In some sense,
they are contradictory and cannot be easily automatically
modified, otherwise, the pulse configuration can also be
easily updated since the automatic modification requires
the pulse syntax verification. The straightforward way to
implement the custom gate with the same functionality
on all qubits will either require the current design where
the custom gate is flexible and pulses are selected for
the specific qubits, or the custom gate is inflexible and
qubit-dependent. Both of them entail inflexibility and
complexity in software development.

• Challenges for the pulse level verification: This is the
cause of other attacks. Again, the pulse configuration is
only a temporary representation of the functionality of the
custom gate. The challenges are discussed in Section 3.2.

In the remainder of this section, we provide one straightfor-
ward framework for detecting the attacks through channel
verification, pulse syntax verification, and pulse semantics
verification. Figure 9 shows the workflow.



6.1. Channel Verification

The qubit plunder and the qubit block can be directly
detected with the software given a quantum circuit. For each
custom gate in the quantum circuit, the qubits to which
the custom gate is applied are provided, and the pulse
configuration for the custom gate is also included in the
quantum circuit. Therefore, with the mapping between gate-
level qubits and pulse-level channels, the qubits and the
channels must be the exact match, i.e., there must be at
least one pulse on each qubit of the custom gate, and none
of the pulses can be on any qubit that is not in the custom
gate. Notice that qubit reorder cannot be directly detected
with this verification, since the match may already be exact.

Besides, there are many defects in most current SDKs
that hinder channel verification. For instance, the register
and memory slots for storing the classical information such
as the measurement results must also correspond to the
custom gate to address the custom measurement. The current
SDKs have not counted for this. For instance, the Gate
class design in Qiskit does not include the classical bits. In
addition, all types of channels must be counted, including
drive channels for single-qubit operations, control channels
for multi-qubit gates, and acquire and measure channels for
measurement. However, this leads to design complexity. For
instance, if one custom gate is a 3-qubit gate, it can be one
single-qubit gate on each qubit, and thus control channels
are blocked and not used, or they can be maliciously plun-
dered; or it can be one single-qubit gate and one two-qubit
gate, and thus only one control channel is used. Both cases
are valid, but it cannot be determined which case is correct
with only the input quantum circuit.

6.2. Pulse Syntax Verification

The other attacks cannot be directly detected with only
the quantum circuit as the input. As explained, in order to
detect these attacks, the syntax and semantics of each pulse
in the custom gate must be specified. This is reasonable for
custom gates with clear goals, such as the pulse-optimized
Toffoli gate. Nevertheless, it is not possible for many other
gates, such as the end-to-end quantum neural network.

The pulse syntax verification is to verify that each
pulse in the input pulse configuration functions correctly
as desired. The pulse syntax verification may be the most
difficult part of the verification for quantum programs. It
is a complicated problem that if two calibration data are
given, how to verify if these two pulse configurations have
similar functionality. The related problem is quantum to-
mography [60]: given a black box (the custom gate), how
to figure out its functionality? One reason is that there are
too many intertwined parameters to specify one pulse. For
example, if the frequency of the pulse is the calibrated qubit
frequency, then the new frequency may also need to be the
new calibrated qubit frequency. However, maybe the original
data contains errors, and thus all parameters were measured
with bias. In this case, the verification will become very

difficult. Similarly, different pulse waveforms may result in
the same effect, this is again hard to deal with.

We propose that to associate the quantum circuit with
both the pulse configuration and the calibration data at the
time the pulse configuration is calibrated, or identically the
date on which the pulse configuration is calibrated. This
associated data should be stored at some trusted author-
ities. Before users execute the quantum circuit or before
the circuit publisher updates the pulse configuration, the
input pulse configuration will be compared with the trusted
pulse configuration, together with the analysis of the current
calibration data from the quantum computer vendors or user
custom experiments with the trusted calibration data.

For the pulse configurations that only include the native
pulses provided by the quantum computer vendors, the ver-
ification can be the exact checking. However, in most cases,
the parameters of pulses are specified. Since the pulse data
is analog and the calibration process is noisy and erroneous,
it is difficult to provide exactly the same functionality check.
The tolerance may need to be provided for the verification.

6.3. Pulse Semantics Verification

Once the pulse syntax is verified, the semantics veri-
fication may be straightforward. Gate-level circuits can be
described as the directed acyclic graph (DAG) [61], and
pulse-level circuits may also be described using the same
language. Qubits in the gate-level DAGs correspond to chan-
nels in the pulse-level DAGs, and the verification problem
can be reduced to the graph problems.

Besides, once the syntax of each pulse is determined, the
analog operations can be described similarly to the “instruc-
tions” in classical computing, and thus many verification
methods for classical programs may be easily applied to
quantum programs.

7. Discussion and Future Work

One impactful future work is to improve the verifica-
tion. While pulse semantics verification may resemble the
verification for classical programs, pulse syntax verification
raises a big challenge. One way to define the syntax may be
to return to the matrix representation since all quantum gates
should be unitary. Then the pulse check can be computing
the similarity between two unitary matrices. However, again,
this problem is similar to tomography, where we must find
a way to efficiently compute the unitary matrix given the
pulses.

Another important topic is how errors are correlated with
tolerance in the defense. This can depend on the size of
the custom gate, the type of the parameter, etc. The current
defense requires input tolerance, where the relation between
it and the results is vague. If users can give the largest
error threshold and then the tolerance can be computed, the
defense will be more useful and powerful.

In addition, if the pulse parameters can be automatically
updated given the calibration data from the cloud provider,



then the attacks can be mitigated to a great extent. Superfi-
cially, if giving the pulses and checking their functionality
is like the P problem, then giving the functionality and
providing the pulses is like the NP problem. However, if
we fix all pulses and only change some of the parameters,
this problem may be greatly simplified.

Lastly, if we think from the other direction from the
qubit properties to the pulse data, because pulse data needs
to be updated when qubit properties change, maliciously
changing the qubit properties can be a new type of attack.
This can be one type of supply chain attack that happens
in the manufacturing process, or by directly altering the
environment in the data center of the cloud platforms.

8. Conclusion

This work presented the first thorough exploration of
the attacks on the interface between the gate-level and pulse-
level quantum circuits and pulse-level quantum circuits. The
attacks presented in this work leverage the mismatch be-
tween the gate-level definition and description of the custom
gate, and the actual, low-level pulse implementation of this
gate. By manipulating the pulse definition numerous attacks
are possible as this work proposed: qubit plunder, qubit
block, qubit reorder, timing mismatch, frequency mismatch,
phase mismatch, and waveform mismatch. The attacks are in
part possible because there is a lack of sufficient verification
in the current quantum software development kits. This
work thus also proposed a defense framework to protect
from these attacks. In summary, this work provides insight
into the future development of secure quantum software
development kits and quantum computer systems.
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[9] R. Orús, S. Mugel, and E. Lizaso, “Quantum computing for finance:
Overview and prospects,” Reviews in Physics, vol. 4, p. 100028, 2019.

[10] D. Herman, C. Googin, X. Liu, Y. Sun, A. Galda, I. Safro, M. Pistoia,
and Y. Alexeev, “Quantum computing for finance,” Nature Reviews
Physics, vol. 5, no. 8, pp. 450–465, 2023.

[11] IBM Quantum, 2024, https://www.ibm.com/quantum.

[12] Amazon Web Services, “Amazon Braket,” 2024. [Online]. Available:
https://aws.amazon.com/braket/

[13] Microsoft Azure, “Azure Quantum,” 2024. [Online]. Available:
https://azure.microsoft.com/en-us/products/quantum

[14] P. Gokhale, J. M. Baker, C. Duckering, N. C. Brown, K. R. Brown,
and F. T. Chong, “Asymptotic improvements to quantum circuits
via qutrits,” in Proceedings of the 46th International Symposium
on Computer Architecture, ser. ISCA ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 554–566. [Online].
Available: https://doi.org/10.1145/3307650.3322253

[15] J. M. Baker, C. Duckering, P. Gokhale, N. C. Brown, K. R. Brown,
and F. T. Chong, “Improved quantum circuits via intermediate
qutrits,” ACM Transactions on Quantum Computing, vol. 1, no. 1,
oct 2020. [Online]. Available: https://doi.org/10.1145/3406309

[16] J. M. Baker, C. Duckering, and F. T. Chong, “Efficient quantum
circuit decompositions via intermediate qudits,” in 2020 IEEE 50th
International Symposium on Multiple-Valued Logic (ISMVL), 2020,
pp. 303–308.

[17] A. Litteken, J. M. Baker, and F. T. Chong, “Communication trade
offs in intermediate qudit circuits,” in 2022 IEEE 52nd International
Symposium on Multiple-Valued Logic (ISMVL), 2022, pp. 43–49.

[18] L. M. Seifert, J. Chadwick, A. Litteken, F. T. Chong, and J. M. Baker,
“Time-efficient qudit gates through incremental pulse re-seeding,” in
2022 IEEE International Conference on Quantum Computing and
Engineering (QCE), 2022, pp. 304–313.

[19] Z. Liang, Z. Song, J. Cheng, Z. He, J. Liu, H. Wang, R. Qin, Y. Wang,
S. Han, X. Qian, and Y. Shi, “Hybrid gate-pulse model for variational
quantum algorithms,” in 2023 60th ACM/IEEE Design Automation
Conference (DAC), 2023, pp. 1–6.

[20] Z. Liang, H. Wang, J. Cheng, Y. Ding, H. Ren, Z. Gao, Z. Hu, D. S.
Boning, X. Qian, S. Han, W. Jiang, and Y. Shi, “Variational quantum
pulse learning,” in 2022 IEEE International Conference on Quantum
Computing and Engineering (QCE), 2022, pp. 556–565.

[21] Z. Liang, J. Cheng, H. Ren, H. Wang, F. Hua, Z. Song, Y. Ding,
F. Chong, S. Han, X. Qian, and Y. Shi, “Napa: Intermediate-level
variational native-pulse ansatz for variational quantum algorithms,”
2024.

[22] Z. Liang, J. Cheng, Z. Song, H. Ren, R. Yang, H. Wang, K. Liu,
P. Kogge, T. Li, Y. Ding, and Y. Shi, “Towards advantages of
parameterized quantum pulses,” 2023.

[23] Z. Liang, Z. Song, J. Cheng, H. Ren, T. Hao, R. Yang, Y. Shi, and
T. Li, “Spacepulse: Combining parameterized pulses and contextual
subspace for more practical vqe,” 2023.

[24] C. Xu, J. Chen, A. Mi, and J. Szefer, “Securing nisq quantum
computer reset operations against higher energy state attacks,” in
Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 594–607. [Online].
Available: https://doi.org/10.1145/3576915.3623104

[25] Qiskit contributors, “Qiskit: An open-source framework for quantum
computing,” 2023.

[26] D. E. Deutsch, A. Barenco, and A. Ekert, “Universality in quantum
computation,” Proceedings of the Royal Society of London. Series A:
Mathematical and Physical Sciences, vol. 449, no. 1937, pp. 669–
677, 1995.

[27] C. Developers, “Cirq,” Dec 2022, see full list of authors on Github:
https://github.com/quantumlib/Cirq/graphs/contributors.

https://research.ibm.com/blog/quantum-roadmap-2033
https://research.ibm.com/blog/quantum-roadmap-2033
https://dx.doi.org/10.1088/0034-4885/76/7/076001
https://www.ibm.com/quantum
https://aws.amazon.com/braket/
https://azure.microsoft.com/en-us/products/quantum
https://doi.org/10.1145/3307650.3322253
https://doi.org/10.1145/3406309
https://doi.org/10.1145/3576915.3623104


[28] S. Deshpande, C. Xu, T. Trochatos, Y. Ding, and J. Szefer, “Towards
an antivirus for quantum computers,” in 2022 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), 2022,
pp. 37–40.

[29] S. Deshpande, C. Xu, T. Trochatos, H. Wang, F. Erata, S. Han,
Y. Ding, and J. Szefer, “Design of quantum computer antivirus,” in
2023 IEEE International Symposium on Hardware Oriented Security
and Trust (HOST), 2023, pp. 260–270.

[30] C. Xu and J. Szefer, “Long-term analysis of the dependability
of cloud-based nisq quantum computers,” in Proceedings of the
18th International Conference on Availability, Reliability and
Security, ser. ARES ’23. New York, NY, USA: Association for
Computing Machinery, 2023. [Online]. Available: https://doi.org/
10.1145/3600160.3600192

[31] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in 2019 IEEE
Symposium on Security and Privacy (SP), 2019, pp. 1–19.

[32] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Ham-
burg, “Meltdown: reading kernel memory from user space,” in Pro-
ceedings of the 27th USENIX Conference on Security Symposium, ser.
SEC’18. USA: USENIX Association, 2018, p. 973–990.

[33] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson,
and W. D. Oliver, “A quantum engineer’s guide to superconducting
qubits,” Applied Physics Reviews, vol. 6, no. 2, p. 021318, 06 2019.
[Online]. Available: https://doi.org/10.1063/1.5089550

[34] D. C. McKay, C. J. Wood, S. Sheldon, J. M. Chow, and
J. M. Gambetta, “Efficient z gates for quantum computing,”
Phys. Rev. A, vol. 96, p. 022330, Aug 2017. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevA.96.022330

[35] S. S. Tannu, P. Das, M. L. Lewis, R. Krick, D. M. Carmean,
and M. K. Qureshi, “A case for superconducting accelerators,”
in Proceedings of the 16th ACM International Conference on
Computing Frontiers, ser. CF ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 67–75. [Online].
Available: https://doi.org/10.1145/3310273.3321561

[36] L. Liu and X. Dou, “Qucloud: A new qubit mapping mechanism
for multi-programming quantum computing in cloud environment,” in
2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), 2021, pp. 167–178.

[37] S. Niu and A. Todri-Sanial, “Enabling Multi-programming
Mechanism for Quantum Computing in the NISQ Era,”
Quantum, vol. 7, p. 925, Feb. 2023. [Online]. Available:
https://doi.org/10.22331/q-2023-02-16-925

[38] S. Upadhyay and S. Ghosh, “Stealthy swaps: Adversarial swap injec-
tion in multi-tenant quantum computing,” 2023.

[39] A. Ash-Saki, M. Alam, and S. Ghosh, “Analysis of crosstalk in nisq
devices and security implications in multi-programming regime,” in
Proceedings of the ACM/IEEE International Symposium on Low
Power Electronics and Design, ser. ISLPED ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 25–30.
[Online]. Available: https://doi.org/10.1145/3370748.3406570

[40] ——, “Experimental characterization, modeling, and analysis of
crosstalk in a quantum computer,” IEEE Transactions on Quantum
Engineering, vol. 1, pp. 1–6, 2020.

[41] Y. Ding, P. Gokhale, S. F. Lin, R. Rines, T. Propson, and F. T.
Chong, “Systematic crosstalk mitigation for superconducting qubits
via frequency-aware compilation,” in 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2020, pp.
201–214.

[42] S. Maurya, C. N. Mude, B. Lienhard, and S. Tannu, “Understanding
side-channel vulnerabilities in superconducting qubit readout archi-
tectures,” 2024.

[43] A. Mi, S. Deng, and J. Szefer, “Securing reset operations in nisq
quantum computers,” in Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS
’22. New York, NY, USA: Association for Computing Machinery,
2022, p. 2279–2293. [Online]. Available: https://doi.org/10.1145/
3548606.3559380
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