Universal Scaling between On-Site Coulomb Repulsion and Numbers of Core and Valence Electrons in Transition Metal Trichalcogenides

May 1, 2023·
Guohua cao
Chuanqi Xu
Chuanqi Xu
,
Ping cui
,
Zhenyu zhang
· 0 min read
DOI
Abstract
Electron correlations that determine a broad spectrum of the physical properties of transition metal compounds are largely manifested by the on-site Coulomb repulsion U, which so far has been mainly evaluated on a case-by-case basis. Here we employ a linear response method based on constrained local density approximation to systematically investigate U in representative classes of transition metal trichalcogenides, with the transition metals covering all the unfilled 3d, 4d, and 5d orbitals. We uncover a characteristic scaling dependence of U on two elemental physical parameters, namely, the numbers of the core and valence electrons. Such a universal scaling law reflects the intuition that more unfilled d electrons residing on a smaller spherical core will feel stronger Coulomb repulsion. Next, by using the artificial intelligence-based SISSO (Sure Independence Screening and Sparsifying Operator) approach, we identify a more sophisticated descriptor that not only further refines the scaling law, but also captures the crystal-field splitting effect as pictorially reflected by invoking an elliptical core instead of a spherical core. The approach developed in this study should find transferability in other classes of transition metal compounds.
Type
Publication
Computer Physics Communications
Authors
Chuanqi Xu
Authors
Chuanqi Xu (he/him)
Research Scientist
I am a Research Scientist at Meta working on Meta’s Generative Ads Recommendation Model (GEM). My focus is on designing and implementing novel transfer learning paradigms to amplify the impact of foundation models within production environments. Additionally, I am working on optimizing the efficiency and performance of GEM’s ecosystem. Previously, I earned my PhD at Yale University. My research there sat at the intersection of quantum computing and security, where I designed novel attacks and defenses for quantum computers. Before this, I completed my undergraduate studies at University of Science and Technology of China (USTC), where I studied and researched on theoretical and computational condensed matter physics.
Authors